IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6686-d656936.html
   My bibliography  Save this article

Power Performance Assessment of Vertical-Axis Tidal Turbines Using an Experimental Test Rig

Author

Listed:
  • Aitor Fernández-Jiménez

    (Hydraulic R&D Group, University of Oviedo, Gonzalo Gutiérrez Quirós St, 33600 Mieres, Spain)

  • Eduardo Álvarez-Álvarez

    (Hydraulic R&D Group, University of Oviedo, Gonzalo Gutiérrez Quirós St, 33600 Mieres, Spain)

  • Mario López

    (DyMAST R&D Group, Department of Construction and Manufacturing Engineering, University of Oviedo, Gonzalo Gutiérrez Quirós St, 33600 Mieres, Spain)

  • Mateo Fouz

    (Área de Ingeniería Hidráulica, University of Santiago de Compostela, Benigno Ledo St, 2, 27002 Lugo, Spain)

  • Iván López

    (Área de Ingeniería Hidráulica, University of Santiago de Compostela, Benigno Ledo St, 2, 27002 Lugo, Spain)

  • Ahmed Gharib-Yosry

    (Mechanical Power Department, Port Said University, Port Said 42526, Egypt)

  • Rubén Claus

    (DyMAST R&D Group, Department of Construction and Manufacturing Engineering, University of Oviedo, Gonzalo Gutiérrez Quirós St, 33600 Mieres, Spain)

  • Rodrigo Carballo

    (Área de Ingeniería Hidráulica, University of Santiago de Compostela, Benigno Ledo St, 2, 27002 Lugo, Spain)

Abstract

This article presents the characteristic curves of a vertical-axis hydrokinetic tidal turbine of the Darrieus subtype aimed at meeting the electricity demand of port facilities located at harbors and estuaries with low water-speed conditions. The turbine was tested in the water-current flume of the University of Santiago de Compostela for several flow conditions with different water heights and water speeds. Blockage conditions were tested by examining the results from two groups of tests: with and without an accelerator device that restricts the flow around the rotor. The tip speed ratio and the power coefficient were used to characterize the performance of the turbine for each test. Finally, the results for open-field conditions were obtained by applying empirical expressions, which allowed us to assess the performance of the device in estuaries and harbors with known water-flow regimes.

Suggested Citation

  • Aitor Fernández-Jiménez & Eduardo Álvarez-Álvarez & Mario López & Mateo Fouz & Iván López & Ahmed Gharib-Yosry & Rubén Claus & Rodrigo Carballo, 2021. "Power Performance Assessment of Vertical-Axis Tidal Turbines Using an Experimental Test Rig," Energies, MDPI, vol. 14(20), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6686-:d:656936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    2. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Benchikh Le Hocine, Alla Eddine & Jay Lacey, R.W. & Poncet, Sébastien, 2019. "Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine," Renewable Energy, Elsevier, vol. 143(C), pages 1890-1901.
    4. Singh, M.A. & Biswas, A. & Misra, R.D., 2015. "Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor," Renewable Energy, Elsevier, vol. 76(C), pages 381-387.
    5. Kirke, B.K., 2011. "Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3013-3022.
    6. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    7. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    8. Chong, Wen-Tong & Muzammil, Wan Khairul & Wong, Kok-Hoe & Wang, Chin-Tsan & Gwani, Mohammed & Chu, Yung-Jeh & Poh, Sin-Chew, 2017. "Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design," Applied Energy, Elsevier, vol. 207(C), pages 78-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Qin & Xiaoran Tang & Yu-Ting Wu & Sung-Ki Lyu, 2022. "Advancement of Tidal Current Generation Technology in Recent Years: A Review," Energies, MDPI, vol. 15(21), pages 1-18, October.
    2. Martinez, A. & Murphy, L. & Iglesias, G., 2023. "Evolution of offshore wind resources in Northern Europe under climate change," Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    2. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    3. Yosry, Ahmed Gharib & Álvarez, Eduardo Álvarez & Valdés, Rodolfo Espina & Pandal, Adrián & Marigorta, Eduardo Blanco, 2023. "Experimental and multiphase modeling of small vertical-axis hydrokinetic turbine with free-surface variations," Renewable Energy, Elsevier, vol. 203(C), pages 788-801.
    4. Mosbahi, Mabrouk & Ayadi, Ahmed & Chouaibi, Youssef & Driss, Zied & Tucciarelli, Tullio, 2020. "Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine," Renewable Energy, Elsevier, vol. 162(C), pages 1087-1103.
    5. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    6. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    8. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    9. Le, Tuyen Quang & Ko, Jin Hwan, 2015. "Effect of hydrofoil flexibility on the power extraction of a flapping tidal generator via two- and three-dimensional flow simulations," Renewable Energy, Elsevier, vol. 80(C), pages 275-285.
    10. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    11. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    12. Derya Karakaya & Aslı Bor & Sebnem Elçi, 2024. "Numerical Analysis of Three Vertical Axis Turbine Designs for Improved Water Energy Efficiency," Energies, MDPI, vol. 17(6), pages 1-24, March.
    13. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    14. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    15. Hu, Zhen & Du, Xiaoping, 2012. "Reliability analysis for hydrokinetic turbine blades," Renewable Energy, Elsevier, vol. 48(C), pages 251-262.
    16. Fernandes, Antonio Carlos & Bakhshandeh Rostami, Ali, 2015. "Hydrokinetic energy harvesting by an innovative vertical axis current turbine," Renewable Energy, Elsevier, vol. 81(C), pages 694-706.
    17. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
    18. Khani, Mohammad Sadegh & Shahsavani, Younes & Mehraein, Mojtaba & Soleimani Rad, Mohammad Hossein & Nikbakhsh, Amir Abbas, 2024. "Evaluation of the performance of the Savonius hydrokinetic turbines in the straight and curved channels using advanced machine learning methods," Energy, Elsevier, vol. 290(C).
    19. Kumar, Dinesh & Sarkar, Shibayan, 2016. "Numerical investigation of hydraulic load and stress induced in Savonius hydrokinetic turbine with the effects of augmentation techniques through fluid-structure interaction analysis," Energy, Elsevier, vol. 116(P1), pages 609-618.
    20. Niebuhr, C.M. & van Dijk, M. & Neary, V.S. & Bhagwan, J.N., 2019. "A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6686-:d:656936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.