IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v317y2022ics0306261922005281.html
   My bibliography  Save this article

A holistic methodology for hydrokinetic energy site selection

Author

Listed:
  • Fouz, D.M.
  • Carballo, R.
  • López, I.
  • Iglesias, G.

Abstract

Hydrokinetic energy can contribute to diversify and decarbonise the energy mix in many coastal regions, in particular estuaries. These are typically areas of high environmental value and with intense socioeconomic activity. The aim of this work is to provide a comprehensive methodology for selecting the optimum locations for hydrokinetic energy exploitation, by considering all the relevant aspects which affect the decision-making process, and improve the current available procedures. The methodology is centred around a novel holistic index, the Integrated Hydrokinetic Energy (IHE) index, which considers: (i) the exploitable resource, (ii) the costs of installation, and (iii) the socioeconomic and environmental aspects. The approach is illustrated through a case study in the Shannon Estuary, on the west coast of Ireland. It is shown that the application of this methodology facilitates the planning and reduces the uncertainties in the development of a hydrokinetic farm project.

Suggested Citation

  • Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "A holistic methodology for hydrokinetic energy site selection," Applied Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005281
    DOI: 10.1016/j.apenergy.2022.119155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akbari, Negar & Jones, Dylan & Arabikhan, Farzad, 2021. "Goal programming models with interval coefficients for the sustainable selection of marine renewable energy projects in the UK," European Journal of Operational Research, Elsevier, vol. 293(2), pages 748-760.
    2. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Lange, Marcus & Cummins, Valerie, 2021. "Managing stakeholder perception and engagement for marine energy transitions in a decarbonising world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Fouz, D.M. & Carballo, R. & Ramos, V. & Iglesias, G., 2019. "Hydrokinetic energy exploitation under combined river and tidal flow," Renewable Energy, Elsevier, vol. 143(C), pages 558-568.
    5. Astariz, S. & Iglesias, G., 2016. "Co-located wind and wave energy farms: Uniformly distributed arrays," Energy, Elsevier, vol. 113(C), pages 497-508.
    6. Alsaleh, Mohd & Abdul-Rahim, A.S., 2022. "The pathway toward pollution mitigation in EU28 region: Does hydropower growth make a difference?," Renewable Energy, Elsevier, vol. 185(C), pages 291-301.
    7. Brooks, David A., 2011. "The hydrokinetic power resource in a tidal estuary: The Kennebec River of the central Maine coast," Renewable Energy, Elsevier, vol. 36(5), pages 1492-1501.
    8. Álvarez, M. & Ramos, V. & Carballo, R. & Arean, N. & Torres, M. & Iglesias, G., 2020. "The influence of dredging for locating a tidal stream energy farm," Renewable Energy, Elsevier, vol. 146(C), pages 242-253.
    9. Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
    10. Galparsoro, I. & Korta, M. & Subirana, I. & Borja, Á. & Menchaca, I. & Solaun, O. & Muxika, I. & Iglesias, G. & Bald, J., 2021. "A new framework and tool for ecological risk assessment of wave energy converters projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Allan, Grant & Gilmartin, Michelle & McGregor, Peter & Swales, Kim, 2011. "Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates," Energy Policy, Elsevier, vol. 39(1), pages 23-39, January.
    12. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Wu, Huijun & Gao, Mengping, 2021. "Sharing hydropower flexibility in interconnected power systems: A case study for the China Southern power grid," Applied Energy, Elsevier, vol. 288(C).
    13. López, A. & Morán, J.L. & Núñez, L.R. & Somolinos, J.A., 2020. "Study of a cost model of tidal energy farms in early design phases with parametrization and numerical values. Application to a second-generation device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    14. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J. & Ward, Sophie L., 2015. "Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas," Applied Energy, Elsevier, vol. 147(C), pages 510-522.
    15. Alvarez, Eduardo Alvarez & Rico-Secades, Manuel & Suárez, Daniel Fernández & Gutiérrez-Trashorras, Antonio J. & Fernández-Francos, Joaquín, 2016. "Obtaining energy from tidal microturbines: A practical example in the Nalón River," Applied Energy, Elsevier, vol. 183(C), pages 100-112.
    16. Hunt, Julian David & Nascimento, Andreas & Caten, Carla Schwengber ten & Tomé, Fernanda Munari Caputo & Schneider, Paulo Smith & Thomazoni, André Luis Ribeiro & Castro, Nivalde José de & Brandão, Robe, 2022. "Energy crisis in Brazil: Impact of hydropower reservoir level on the river flow," Energy, Elsevier, vol. 239(PA).
    17. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2014. "A port towards energy self-sufficiency using tidal stream power," Energy, Elsevier, vol. 71(C), pages 432-444.
    18. Liu, Xiaodong & Chen, Zheng & Si, Yulin & Qian, Peng & Wu, He & Cui, Lin & Zhang, Dahai, 2021. "A review of tidal current energy resource assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    20. Iglesias, I. & Bio, A. & Bastos, L. & Avilez-Valente, P., 2021. "Estuarine hydrodynamic patterns and hydrokinetic energy production: The Douro estuary case study," Energy, Elsevier, vol. 222(C).
    21. Lewis, Matt & O’Hara Murray, Rory & Fredriksson, Sam & Maskell, John & de Fockert, Anton & Neill, Simon P & Robins, Peter E, 2021. "A standardised tidal-stream power curve, optimised for the global resource," Renewable Energy, Elsevier, vol. 170(C), pages 1308-1323.
    22. Yang, Zhaoqing & Wang, Taiping & Branch, Ruth & Xiao, Ziyu & Deb, Mithun, 2021. "Tidal stream energy resource characterization in the Salish Sea," Renewable Energy, Elsevier, vol. 172(C), pages 188-208.
    23. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    24. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2014. "The role of tidal asymmetry in characterizing the tidal energy resource of Orkney," Renewable Energy, Elsevier, vol. 68(C), pages 337-350.
    25. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    26. Bhattacharya, Saptarshi & Pennock, Shona & Robertson, Bryson & Hanif, Sarmad & Alam, Md Jan E. & Bhatnagar, Dhruv & Preziuso, Danielle & O’Neil, Rebecca, 2021. "Timing value of marine renewable energy resources for potential grid applications," Applied Energy, Elsevier, vol. 299(C).
    27. Marsh, P. & Penesis, I. & Nader, J.R. & Cossu, R. & Auguste, C. & Osman, P. & Couzi, C., 2021. "Tidal current resource assessment and study of turbine extraction effects in Banks Strait, Australia," Renewable Energy, Elsevier, vol. 180(C), pages 1451-1464.
    28. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "Tidal stream energy potential in the Shannon Estuary," Renewable Energy, Elsevier, vol. 185(C), pages 61-74.
    29. Blunden, L.S. & Bahaj, A.S., 2006. "Initial evaluation of tidal stream energy resources at Portland Bill, UK," Renewable Energy, Elsevier, vol. 31(2), pages 121-132.
    30. Dalton, Gordon & Allan, Grant & Beaumont, Nicola & Georgakaki, Aliki & Hacking, Nick & Hooper, Tara & Kerr, Sandy & O’Hagan, Anne Marie & Reilly, Kieran & Ricci, Pierpaolo & Sheng, Wanan & Stallard, T, 2015. "Economic and socio-economic assessment methods for ocean renewable energy: Public and private perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 850-878.
    31. Mestres, Marc & Griñó, Maria & Sierra, Joan Pau & Mösso, César, 2016. "Analysis of the optimal deployment location for tidal energy converters in the mesotidal Ria de Vigo (NW Spain)," Energy, Elsevier, vol. 115(P1), pages 1179-1187.
    32. Carballo, R. & Iglesias, G. & Castro, A., 2009. "Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain)," Renewable Energy, Elsevier, vol. 34(6), pages 1517-1524.
    33. Tunio, Intizar Ali & Shah, Madad Ali & Hussain, Tanweer & Harijan, Khanji & Mirjat, Nayyar Hussain & Memon, Abdul Hameed, 2020. "Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine," Renewable Energy, Elsevier, vol. 153(C), pages 143-154.
    34. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    35. Goss, Z.L. & Coles, D.S. & Kramer, S.C. & Piggott, M.D., 2021. "Efficient economic optimisation of large-scale tidal stream arrays," Applied Energy, Elsevier, vol. 295(C).
    36. M. S. Chowdhury & Kazi Sajedur Rahman & Vidhya Selvanathan & Narissara Nuthammachot & Montri Suklueng & Ali Mostafaeipour & Asiful Habib & Md. Akhtaruzzaman & Nowshad Amin & Kuaanan Techato, 2021. "Current trends and prospects of tidal energy technology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8179-8194, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    2. Zhang, Jiacheng & Yu, Yang & Li, Hengyu & Zhu, Mingkang & Zhang, Sheng & Gu, Chengjie & Jiang, Lin & Wang, Zhong Lin & Zhu, Jianyang & Cheng, Tinghai, 2024. "Triboelectric-electromagnetic hybrid generator with Savonius flapping wing for low-velocity water flow energy harvesting," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    2. Cruz, M. & Henriques, R. & Pinho, J.L. & Avilez-Valente, P. & Bio, A. & Iglesias, I., 2023. "Assessment of the potential for hydrokinetic energy production in the Douro river estuary under sea level rise scenarios," Energy, Elsevier, vol. 271(C).
    3. Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
    4. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "Tidal stream energy potential in the Shannon Estuary," Renewable Energy, Elsevier, vol. 185(C), pages 61-74.
    6. Khojasteh, Danial & Chen, Shengyang & Felder, Stefan & Glamore, William & Hashemi, M. Reza & Iglesias, Gregorio, 2022. "Sea level rise changes estuarine tidal stream energy," Energy, Elsevier, vol. 239(PE).
    7. Gianmaria Giannini & Victor Ramos & Paulo Rosa-Santos & Tomás Calheiros-Cabral & Francisco Taveira-Pinto, 2022. "Hydrokinetic Power Resource Assessment in a Combined Estuarine and River Region," Sustainability, MDPI, vol. 14(5), pages 1-24, February.
    8. Vazquez, A. & Iglesias, G., 2016. "Grid parity in tidal stream energy projects: An assessment of financial, technological and economic LCOE input parameters," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 89-101.
    9. Álvarez, M. & Ramos, V. & Carballo, R. & Arean, N. & Torres, M. & Iglesias, G., 2020. "The influence of dredging for locating a tidal stream energy farm," Renewable Energy, Elsevier, vol. 146(C), pages 242-253.
    10. Vazquez, A. & Iglesias, G., 2015. "LCOE (levelised cost of energy) mapping: A new geospatial tool for tidal stream energy," Energy, Elsevier, vol. 91(C), pages 192-201.
    11. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    12. Burić, Melita & Grgurić, Sanja & Mikulčić, Hrvoje & Wang, Xuebin, 2021. "A numerical investigation of tidal current energy resource potential in a sea strait," Energy, Elsevier, vol. 234(C).
    13. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    14. Fouz, D.M. & Carballo, R. & Ramos, V. & Iglesias, G., 2019. "Hydrokinetic energy exploitation under combined river and tidal flow," Renewable Energy, Elsevier, vol. 143(C), pages 558-568.
    15. Mestres, Marc & Cerralbo, Pablo & Grifoll, Manel & Sierra, Joan Pau & Espino, Manuel, 2019. "Modelling assessment of the tidal stream resource in the Ria of Ferrol (NW Spain) using a year-long simulation," Renewable Energy, Elsevier, vol. 131(C), pages 811-817.
    16. Cosme, Diego L.S. & Veras, Rafael B. & Camacho, Ramiro G.R. & Saavedra, Osvaldo R. & Torres, Audálio & Andrade, Mauro M., 2023. "Modeling and assessing the potential of the Boqueirão channel for tidal exploration," Renewable Energy, Elsevier, vol. 219(P1).
    17. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    18. Iglesias, I. & Bio, A. & Bastos, L. & Avilez-Valente, P., 2021. "Estuarine hydrodynamic patterns and hydrokinetic energy production: The Douro estuary case study," Energy, Elsevier, vol. 222(C).
    19. Iglesias, G. & Sánchez, M. & Carballo, R. & Fernández, H., 2012. "The TSE index – A new tool for selecting tidal stream sites in depth-limited regions," Renewable Energy, Elsevier, vol. 48(C), pages 350-357.
    20. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.