IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp451-465.html
   My bibliography  Save this article

Effects of unsteady stream on hydrodynamic behavior of flexible hydrofoil in semi-passive mode

Author

Listed:
  • Zhang, Yubing
  • Wang, Qixian
  • Han, Jiazhen
  • Xie, Yudong

Abstract

The effects of unsteady stream on the hydrodynamic behavior of a flexible hydrofoil in the semi-passive mode are investigated in this study with the goal of improving power extraction. Specifically, the influences of flow velocity amplitude (λ), the frequency ratio (σ) between hydrofoil and flow velocity, and phase difference (ε) between the flow velocity and pitching motion of the hydrofoil are examined. The results reveal that σ has a significant effect on lift force and heaving velocity, thus severely affecting the average power coefficient (CP‾) and heaving response. The peak value of CP‾ is attained when σ = 2; this is attributed to the satisfactory synchronization between the flow velocity and heaving motion of the hydrofoil. Initially, CP‾ increases with ε until ε = 90°; then, it decreases as ε further increases. The equilibrium position of the heaving response is sensitive to both ε and λ. The relative relationship between the flow velocity and pitching motion is modified by ε, altering the evolution of the lift force, heaving velocity, vortex, and pressure distribution. Through comprehensive adjusting σ and ε according to λ, the hydrofoil encounters minimum incoming flow near the dead point. This is the key to improve power extraction.

Suggested Citation

  • Zhang, Yubing & Wang, Qixian & Han, Jiazhen & Xie, Yudong, 2023. "Effects of unsteady stream on hydrodynamic behavior of flexible hydrofoil in semi-passive mode," Renewable Energy, Elsevier, vol. 206(C), pages 451-465.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:451-465
    DOI: 10.1016/j.renene.2023.02.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812300215X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Weizhong & Wang, Wen-Quan & Yan, Yan, 2020. "The effects of outline of the symmetrical flapping hydrofoil on energy harvesting performance," Renewable Energy, Elsevier, vol. 162(C), pages 624-638.
    2. Zhu, Bing & Huang, Yun & Zhang, Yongming, 2018. "Energy harvesting properties of a flapping wing with an adaptive Gurney flap," Energy, Elsevier, vol. 152(C), pages 119-128.
    3. Garcia Novo, Patxi & Kyozuka, Yusaku & Ginzo Villamayor, Maria Jose, 2019. "Evaluation of turbulence-related high-frequency tidal current velocity fluctuation," Renewable Energy, Elsevier, vol. 139(C), pages 313-325.
    4. Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
    5. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    6. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2019. "Performance evaluation and enhancement of a semi-activated flapping hydrofoil in shear flows," Energy, Elsevier, vol. 189(C).
    7. Lu, Kun & Xie, Yonghui & Zhang, Di, 2014. "Nonsinusoidal motion effects on energy extraction performance of a flapping foil," Renewable Energy, Elsevier, vol. 64(C), pages 283-293.
    8. Ma, Penglei & Wang, Yong & Xie, Yudong & Zhang, Jianhua, 2018. "Analysis of a hydraulic coupling system for dual oscillating foils with a parallel configuration," Energy, Elsevier, vol. 143(C), pages 273-283.
    9. Le, Tuyen Quang & Ko, Jin Hwan, 2015. "Effect of hydrofoil flexibility on the power extraction of a flapping tidal generator via two- and three-dimensional flow simulations," Renewable Energy, Elsevier, vol. 80(C), pages 275-285.
    10. Zhang, Yubing & Wang, Yong & Xie, Yudong & Sun, Guang & Han, Jiazhen, 2022. "Effects of flexibility on energy extraction performance of an oscillating hydrofoil under a semi-activated mode," Energy, Elsevier, vol. 242(C).
    11. Teng, Lubao & Deng, Jian & Pan, Dingyi & Shao, Xueming, 2016. "Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil," Renewable Energy, Elsevier, vol. 85(C), pages 810-818.
    12. Ma, Penglei & Liu, Guijie & Wang, Honghui & Wang, Yong & Xie, Yudong, 2021. "Co-simulations of a semi-passive oscillating foil turbine using a hydraulic system," Energy, Elsevier, vol. 217(C).
    13. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
    14. Xie, Y.H. & Jiang, W. & Lu, K. & Zhang, D., 2016. "Numerical investigation into energy extraction of flapping airfoil with Gurney flaps," Energy, Elsevier, vol. 109(C), pages 694-702.
    15. Ma, Penglei & Wang, Yong & Xie, Yudong & Liu, Guijie, 2021. "Behaviors of two semi-passive oscillating hydrofoils with a tandem configuration," Energy, Elsevier, vol. 214(C).
    16. Wu, Jie & Shen, Meng & Jiang, Lan, 2020. "Role of synthetic jet control in energy harvesting capability of a semi-active flapping airfoil," Energy, Elsevier, vol. 208(C).
    17. Ma, Penglei & Wang, Yong & Xie, Yudong & Huo, Zhipu, 2018. "Numerical analysis of a tidal current generator with dual flapping wings," Energy, Elsevier, vol. 155(C), pages 1077-1089.
    18. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yubing & Wang, Yong & Xie, Yudong & Sun, Guang & Han, Jiazhen, 2022. "Effects of flexibility on energy extraction performance of an oscillating hydrofoil under a semi-activated mode," Energy, Elsevier, vol. 242(C).
    2. Tian, Chenye & Liu, Xiaomin, 2024. "Numerical study on the energy extraction characteristics of a flapping foil with movable lateral flaps," Renewable Energy, Elsevier, vol. 225(C).
    3. Liu, Zhen & Qu, Hengliang & Song, Xinyu & Chen, Zhengshou & Ni, Heqiang, 2023. "Energy-harvesting performance of tandem coupled-pitching hydrofoils under the semi-activated mode: An experimental study," Energy, Elsevier, vol. 279(C).
    4. Xu, Bin & Ma, Qiyu & Huang, Diangui, 2021. "Research on energy harvesting properties of a diffuser-augmented flapping wing," Renewable Energy, Elsevier, vol. 180(C), pages 271-280.
    5. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    6. Liu, Zhen & Qu, Hengliang & Zhang, Guoliang, 2020. "Experimental and numerical investigations of a coupled-pitching hydrofoil under the fully-activated mode," Renewable Energy, Elsevier, vol. 155(C), pages 432-446.
    7. Wu, Jie & Shen, Meng & Jiang, Lan, 2020. "Role of synthetic jet control in energy harvesting capability of a semi-active flapping airfoil," Energy, Elsevier, vol. 208(C).
    8. Ma, Penglei & Liu, Guijie & Wang, Honghui & Wang, Yong & Xie, Yudong, 2021. "Co-simulations of a semi-passive oscillating foil turbine using a hydraulic system," Energy, Elsevier, vol. 217(C).
    9. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
    10. Liu, Zhen & Qu, Hengliang, 2022. "Numerical study on a coupled-pitching flexible hydrofoil under the semi-passive mode," Renewable Energy, Elsevier, vol. 189(C), pages 339-358.
    11. Arun Raj Shanmugam & Ki Sun Park & Chang Hyun Sohn, 2023. "Comparison of the Power Extraction Performance of an Oscillating Hydrofoil Turbine with Different Deflector Designs," Energies, MDPI, vol. 16(8), pages 1-29, April.
    12. Jiang, W. & Mei, Z.Y. & Wu, F. & Han, A. & Xie, Y.H. & Xie, D.M., 2022. "Effect of shroud on the energy extraction performance of oscillating foil," Energy, Elsevier, vol. 239(PD).
    13. Ma, Penglei & Wang, Yong & Xie, Yudong & Liu, Guijie, 2021. "Behaviors of two semi-passive oscillating hydrofoils with a tandem configuration," Energy, Elsevier, vol. 214(C).
    14. Benoît Genest & Guy Dumas, 2023. "Oscillating-Foil Turbine Performance Improvement by the Addition of Double Gurney Flaps and Kinematics Optimization," Energies, MDPI, vol. 16(6), pages 1-18, March.
    15. Wang, Bo & Zhu, Bing & Zhang, Wei, 2019. "New type of motion trajectory for increasing the power extraction efficiency of flapping wing devices," Energy, Elsevier, vol. 189(C).
    16. Ma, Penglei & Wang, Yong & Xie, Yudong & Huo, Zhipu, 2018. "Numerical analysis of a tidal current generator with dual flapping wings," Energy, Elsevier, vol. 155(C), pages 1077-1089.
    17. Zhu, Bing & Huang, Yun & Zhang, Yongming, 2018. "Energy harvesting properties of a flapping wing with an adaptive Gurney flap," Energy, Elsevier, vol. 152(C), pages 119-128.
    18. Ma, Penglei & Yang, Zhihong & Wang, Yong & Liu, Haibin & Xie, Yudong, 2017. "Energy extraction and hydrodynamic behavior analysis by an oscillating hydrofoil device," Renewable Energy, Elsevier, vol. 113(C), pages 648-659.
    19. Zhang, Mengjie & Liu, Taotao & Huang, Biao & Wu, Qin & Wang, Guoyu, 2020. "Hydrodynamic characteristics and flow structures of pitching hydrofoil with special emphasis on the added force effect," Renewable Energy, Elsevier, vol. 157(C), pages 560-573.
    20. Xu, Wenhua & Xu, Guodong & Duan, Wenyang & Song, Zhijie & Lei, Jie, 2019. "Experimental and numerical study of a hydrokinetic turbine based on tandem flapping hydrofoils," Energy, Elsevier, vol. 174(C), pages 375-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:451-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.