IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7416-d937482.html
   My bibliography  Save this article

Co-Estimation of State-of-Charge and State-of-Health for Lithium-Ion Batteries Considering Temperature and Ageing

Author

Listed:
  • Xin Lai

    (School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Ming Yuan

    (School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Xiaopeng Tang

    (Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China)

  • Yi Yao

    (School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Jiahui Weng

    (School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Furong Gao

    (Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China)

  • Weiguo Ma

    (School of Electrical Engineering, Nantong University, Nantong 226019, China)

  • Yuejiu Zheng

    (School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract

State-of-charge (SOC) estimation of lithium-ion batteries (LIBs) is the basis of other state estimations. However, its accuracy can be affected by many factors, such as temperature and ageing. To handle this bottleneck issue, we here propose a joint SOC-SOH estimation method considering the influence of the temperature. It combines the Forgetting Factor Recursive Least Squares (FFRLS) algorithm, Total Least Squares (TLS) algorithm, and Unscented Kalman Filter (UKF) algorithm. First, the FFRLS algorithm is used to identify and update the parameters of the equivalent circuit model in real time under different battery ageing degrees. Then, the TLS algorithm is used to estimate the battery SOH to improve the prior estimation accuracy of SOC. Next, the SOC is calculated by the UKF algorithm, and finally, a more accurate SOH can be obtained according to the UKF-based SOC trajectory. The battery-in-the-loop experiments are utilized to verify the proposed algorithm. For the cases of temperature change up to 35 °C and capacity decay up to 10%, our joint estimator can achieve ultra-low errors, bounded by 2%, respectively, for SOH and SOC. The proposed method paves the way for the advancement of battery use in applications, such as electric vehicles and microgrid applications.

Suggested Citation

  • Xin Lai & Ming Yuan & Xiaopeng Tang & Yi Yao & Jiahui Weng & Furong Gao & Weiguo Ma & Yuejiu Zheng, 2022. "Co-Estimation of State-of-Charge and State-of-Health for Lithium-Ion Batteries Considering Temperature and Ageing," Energies, MDPI, vol. 15(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7416-:d:937482
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization," Energy, Elsevier, vol. 204(C).
    2. Quanqing Yu & Changjiang Wan & Junfu Li & Lixin E & Xin Zhang & Yonghe Huang & Tao Liu, 2021. "An Open Circuit Voltage Model Fusion Method for State of Charge Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 14(7), pages 1-22, March.
    3. Wenhui Zheng & Bizhong Xia & Wei Wang & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2019. "State of Charge Estimation for Power Lithium-Ion Battery Using a Fuzzy Logic Sliding Mode Observer," Energies, MDPI, vol. 12(13), pages 1-14, June.
    4. Xiangdong Sun & Jingrun Ji & Biying Ren & Chenxue Xie & Dan Yan, 2019. "Adaptive Forgetting Factor Recursive Least Square Algorithm for Online Identification of Equivalent Circuit Model Parameters of a Lithium-Ion Battery," Energies, MDPI, vol. 12(12), pages 1-15, June.
    5. Li, Shuangqi & He, Hongwen & Li, Jianwei, 2019. "Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology," Applied Energy, Elsevier, vol. 242(C), pages 1259-1273.
    6. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Yu, Quanqing & Xiong, Rui & Yang, Ruixin & Pecht, Michael G., 2019. "Online capacity estimation for lithium-ion batteries through joint estimation method," Applied Energy, Elsevier, vol. 255(C).
    8. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    9. Yang, Xiaolong & Chen, Yongji & Li, Bin & Luo, Dong, 2020. "Battery states online estimation based on exponential decay particle swarm optimization and proportional-integral observer with a hybrid battery model," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Zhang & Jiawei Hou & Zekun Wang & Yueqiu Jiang, 2022. "Joint SOH-SOC Estimation Model for Lithium-Ion Batteries Based on GWO-BP Neural Network," Energies, MDPI, vol. 16(1), pages 1-17, December.
    2. Yonghong Xu & Cheng Li & Xu Wang & Hongguang Zhang & Fubin Yang & Lili Ma & Yan Wang, 2022. "Joint Estimation Method with Multi-Innovation Unscented Kalman Filter Based on Fractional-Order Model for State of Charge and State of Health Estimation," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    3. Lai, Xin & Zhou, Long & Zhu, Zhiwei & Zheng, Yuejiu & Sun, Tao & Shen, Kai, 2023. "Experimental investigation on the characteristics of coulombic efficiency of lithium-ion batteries considering different influencing factors," Energy, Elsevier, vol. 274(C).
    4. Bingyu Sang & Zaijun Wu & Bo Yang & Junjie Wei & Youhong Wan, 2024. "Joint Estimation of SOC and SOH for Lithium-Ion Batteries Based on Dual Adaptive Central Difference H-Infinity Filter," Energies, MDPI, vol. 17(7), pages 1-16, March.
    5. Piotr Szewczyk & Andrzej Łebkowski, 2022. "Comparative Studies on Batteries for the Electrochemical Energy Storage in the Delivery Vehicle," Energies, MDPI, vol. 15(24), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    2. Zheng Chen & Jiapeng Xiao & Xing Shu & Shiquan Shen & Jiangwei Shen & Yonggang Liu, 2020. "Model-Based Adaptive Joint Estimation of the State of Charge and Capacity for Lithium–Ion Batteries in Their Entire Lifespan," Energies, MDPI, vol. 13(6), pages 1-15, March.
    3. Li, Alan G. & Wang, Weizhong & West, Alan C. & Preindl, Matthias, 2022. "Health and performance diagnostics in Li-ion batteries with pulse-injection-aided machine learning," Applied Energy, Elsevier, vol. 315(C).
    4. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    5. Bingyu Sang & Zaijun Wu & Bo Yang & Junjie Wei & Youhong Wan, 2024. "Joint Estimation of SOC and SOH for Lithium-Ion Batteries Based on Dual Adaptive Central Difference H-Infinity Filter," Energies, MDPI, vol. 17(7), pages 1-16, March.
    6. Wang, Ya-Xiong & Chen, Zhenhang & Zhang, Wei, 2022. "Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning," Energy, Elsevier, vol. 244(PB).
    7. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    8. Jiang, Bo & Tao, Siyi & Wang, Xueyuan & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "Mechanics-based state of charge estimation for lithium-ion pouch battery using deep learning technique," Energy, Elsevier, vol. 278(PA).
    9. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Lei, Zhenzhen & Zhang, Yuanjian, 2023. "State of health estimation for lithium-ion batteries based on hybrid attention and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Che, Yunhong & Deng, Zhongwei & Li, Penghua & Tang, Xiaolin & Khosravinia, Kavian & Lin, Xianke & Hu, Xiaosong, 2022. "State of health prognostics for series battery packs: A universal deep learning method," Energy, Elsevier, vol. 238(PB).
    11. Li, Shuangqi & He, Hongwen & Su, Chang & Zhao, Pengfei, 2020. "Data driven battery modeling and management method with aging phenomenon considered," Applied Energy, Elsevier, vol. 275(C).
    12. Quanqing Yu & Changjiang Wan & Junfu Li & Rui Xiong & Zeyu Chen, 2021. "A Model-Based Sensor Fault Diagnosis Scheme for Batteries in Electric Vehicles," Energies, MDPI, vol. 14(4), pages 1-15, February.
    13. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Xu, Zhicheng & Wang, Jun & Lund, Peter D. & Zhang, Yaoming, 2021. "Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data," Energy, Elsevier, vol. 225(C).
    15. Hou, Jie & Liu, Jiawei & Chen, Fengwei & Li, Penghua & Zhang, Tao & Jiang, Jincheng & Chen, Xiaolei, 2023. "Robust lithium-ion state-of-charge and battery parameters joint estimation based on an enhanced adaptive unscented Kalman filter," Energy, Elsevier, vol. 271(C).
    16. Xue, Qiao & Li, Junqiu & Xu, Peipei, 2022. "Machine learning based swift online capacity prediction of lithium-ion battery through whole cycle life," Energy, Elsevier, vol. 261(PA).
    17. Li, Shuangqi & He, Hongwen & Zhao, Pengfei & Cheng, Shuang, 2022. "Health-Conscious vehicle battery state estimation based on deep transfer learning," Applied Energy, Elsevier, vol. 316(C).
    18. Wang, Yujie & Chen, Zonghai, 2020. "A framework for state-of-charge and remaining discharge time prediction using unscented particle filter," Applied Energy, Elsevier, vol. 260(C).
    19. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7416-:d:937482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.