IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs0360544222026883.html
   My bibliography  Save this article

An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range

Author

Listed:
  • Jiang, Bo
  • Zhu, Yuli
  • Zhu, Jiangong
  • Wei, Xuezhe
  • Dai, Haifeng

Abstract

Capacity estimation is essential for battery health management during the whole lifecycle. The data-driven technique has shown advanced performance in battery capacity estimation. However, the strict limitations on application scenarios and the long duration for feature determination are still the bottlenecks of existing data-driven estimation methods. This study proposes a data-driven capacity estimation method only using 10-min relaxation voltage data, which is adaptable to the high state of charge (SOC) range. The experiments of commercial batteries are designed to investigate the coupling relationship between relaxation voltage, battery aging, and charging cut-off SOC. Further, a novel dual Gaussian process regression (GPR) framework is put forward, in which one GPR is responsible for the battery open-circuit voltage (OCV) estimation using the sequential relaxation voltage feature, and another GPR estimates battery capacity with the corresponding relaxation voltage feature and the estimated OCV. Quantitative experimental results demonstrate that the proposed approach can achieve accurate OCV estimation with extremely sparse voltage data. When SOC is larger than 90%, the capacity estimation achieves a mean absolute error of 2.493% over the battery lifecycle, showing a noticeable improvement over the traditional estimation method.

Suggested Citation

  • Jiang, Bo & Zhu, Yuli & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222026883
    DOI: 10.1016/j.energy.2022.125802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Waag, Wladislaw & Sauer, Dirk Uwe, 2013. "Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination," Applied Energy, Elsevier, vol. 111(C), pages 416-427.
    2. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Jiang, Bo & Dai, Haifeng & Wei, Xuezhe, 2020. "Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition," Applied Energy, Elsevier, vol. 269(C).
    4. Qiaohua Fang & Xuezhe Wei & Tianyi Lu & Haifeng Dai & Jiangong Zhu, 2019. "A State of Health Estimation Method for Lithium-Ion Batteries Based on Voltage Relaxation Model," Energies, MDPI, vol. 12(7), pages 1-18, April.
    5. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
    6. Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Li, Weihan & Fan, Yue & Ringbeck, Florian & Jöst, Dominik & Sauer, Dirk Uwe, 2022. "Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression," Applied Energy, Elsevier, vol. 306(PB).
    8. Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo, 2020. "State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression," Energy, Elsevier, vol. 203(C).
    9. Li, Xiaoyu & Yuan, Changgui & Li, Xiaohui & Wang, Zhenpo, 2020. "State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression," Energy, Elsevier, vol. 190(C).
    10. Li, Yi & Zou, Changfu & Berecibar, Maitane & Nanini-Maury, Elise & Chan, Jonathan C.-W. & van den Bossche, Peter & Van Mierlo, Joeri & Omar, Noshin, 2018. "Random forest regression for online capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 232(C), pages 197-210.
    11. Yu, Quanqing & Xiong, Rui & Yang, Ruixin & Pecht, Michael G., 2019. "Online capacity estimation for lithium-ion batteries through joint estimation method," Applied Energy, Elsevier, vol. 255(C).
    12. Yang, Jufeng & Cai, Yingfeng & Mi, Chris, 2022. "Lithium-ion battery capacity estimation based on battery surface temperature change under constant-current charge scenario," Energy, Elsevier, vol. 241(C).
    13. Qian, Cheng & Xu, Binghui & Chang, Liang & Sun, Bo & Feng, Qiang & Yang, Dezhen & Ren, Yi & Wang, Zili, 2021. "Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries," Energy, Elsevier, vol. 227(C).
    14. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    15. Shen, Sheng & Sadoughi, Mohammadkazem & Li, Meng & Wang, Zhengdao & Hu, Chao, 2020. "Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 260(C).
    16. Dai, Haifeng & Xu, Tianjiao & Zhu, Letao & Wei, Xuezhe & Sun, Zechang, 2016. "Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales," Applied Energy, Elsevier, vol. 184(C), pages 119-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    2. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    3. Cheng, Xingqun & Liu, Xiaolong & Li, Xinxin & Yu, Quanqing, 2024. "An intelligent fusion estimation method for state of charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 286(C).
    4. Chen, Si-Zhe & Liang, Zikang & Yuan, Haoliang & Yang, Ling & Xu, Fangyuan & Fan, Yuanliang, 2023. "A novel state of health estimation method for lithium-ion batteries based on constant-voltage charging partial data and convolutional neural network," Energy, Elsevier, vol. 283(C).
    5. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    6. Siyi Tao & Bo Jiang & Xuezhe Wei & Haifeng Dai, 2023. "A Systematic and Comparative Study of Distinct Recurrent Neural Networks for Lithium-Ion Battery State-of-Charge Estimation in Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-17, February.
    7. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    8. Jiang, Bo & Tao, Siyi & Wang, Xueyuan & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "Mechanics-based state of charge estimation for lithium-ion pouch battery using deep learning technique," Energy, Elsevier, vol. 278(PA).
    9. Ko, Chi-Jyun & Chen, Kuo-Ching & Su, Ting-Wei, 2024. "Differential current in constant-voltage charging mode: A novel tool for state-of-health and state-of-charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 288(C).
    10. Yang, Yongsong & Xu, Yuchen & Nie, Yuwei & Li, Jianming & Liu, Shizhuo & Zhao, Lijun & Yu, Quanqing & Zhang, Chengming, 2024. "Deep transfer learning enables battery state of charge and state of health estimation," Energy, Elsevier, vol. 294(C).
    11. Lin, Mingqiang & Wu, Jian & Meng, Jinhao & Wang, Wei & Wu, Ji, 2023. "State of health estimation with attentional long short-term memory network for lithium-ion batteries," Energy, Elsevier, vol. 268(C).
    12. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Constructing battery impedance spectroscopy using partial current in constant-voltage charging or partial relaxation voltage," Applied Energy, Elsevier, vol. 356(C).
    13. Xie, Yanxin & Wang, Shunli & Zhang, Gexiang & Fan, Yongcun & Fernandez, Carlos & Blaabjerg, Frede, 2023. "Optimized multi-hidden layer long short-term memory modeling and suboptimal fading extended Kalman filtering strategies for the synthetic state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    2. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    3. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
    4. Wang, Zhe & Yang, Fangfang & Xu, Qiang & Wang, Yongjian & Yan, Hong & Xie, Min, 2023. "Capacity estimation of lithium-ion batteries based on data aggregation and feature fusion via graph neural network," Applied Energy, Elsevier, vol. 336(C).
    5. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
    6. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    7. Li, Yihuan & Li, Kang & Liu, Xuan & Wang, Yanxia & Zhang, Li, 2021. "Lithium-ion battery capacity estimation — A pruned convolutional neural network approach assisted with transfer learning," Applied Energy, Elsevier, vol. 285(C).
    8. Mehta, Rohit & Gupta, Amit, 2024. "Mathematical modelling of electrochemical, thermal and degradation processes in lithium-ion cells—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Huang, Huanyang & Meng, Jinhao & Wang, Yuhong & Feng, Fei & Cai, Lei & Peng, Jichang & Liu, Tianqi, 2022. "A comprehensively optimized lithium-ion battery state-of-health estimator based on Local Coulomb Counting Curve," Applied Energy, Elsevier, vol. 322(C).
    10. Chen, Si-Zhe & Liang, Zikang & Yuan, Haoliang & Yang, Ling & Xu, Fangyuan & Fan, Yuanliang, 2023. "A novel state of health estimation method for lithium-ion batteries based on constant-voltage charging partial data and convolutional neural network," Energy, Elsevier, vol. 283(C).
    11. Wei, Meng & Ye, Min & Zhang, Chuanwei & Wang, Qiao & Lian, Gaoqi & Xia, Baozhou, 2024. "Integrating mechanism and machine learning based capacity estimation for LiFePO4 batteries under slight overcharge cycling," Energy, Elsevier, vol. 296(C).
    12. Yao, Jiachi & Han, Te, 2023. "Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data," Energy, Elsevier, vol. 271(C).
    13. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    14. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    15. Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
    16. Tian, Yong & Dong, Qianyuan & Tian, Jindong & Li, Xiaoyu & Li, Guang & Mehran, Kamyar, 2023. "Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation," Applied Energy, Elsevier, vol. 332(C).
    17. Kong, Jin-zhen & Yang, Fangfang & Zhang, Xi & Pan, Ershun & Peng, Zhike & Wang, Dong, 2021. "Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries," Energy, Elsevier, vol. 223(C).
    18. Shi, Mingjie & Xu, Jun & Lin, Chuanping & Mei, Xuesong, 2022. "A fast state-of-health estimation method using single linear feature for lithium-ion batteries," Energy, Elsevier, vol. 256(C).
    19. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    20. Liu, Yisheng & Fan, Guodong & Zhou, Boru & Chen, Shun & Sun, Ziqiang & Wang, Yansong & Zhang, Xi, 2023. "Rapid and flexible battery capacity estimation using random short-time charging segments based on residual convolutional networks," Applied Energy, Elsevier, vol. 351(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222026883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.