A Model-Based Sensor Fault Diagnosis Scheme for Batteries in Electric Vehicles
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhentong Liu & Hongwen He, 2015. "Model-based Sensor Fault Diagnosis of a Lithium-ion Battery in Electric Vehicles," Energies, MDPI, vol. 8(7), pages 1-19, June.
- Berecibar, Maitane & Garmendia, Maitane & Gandiaga, Iñigo & Crego, Jon & Villarreal, Igor, 2016. "State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application," Energy, Elsevier, vol. 103(C), pages 784-796.
- Yinjiao Xing & Eden W. M. Ma & Kwok L. Tsui & Michael Pecht, 2011. "Battery Management Systems in Electric and Hybrid Vehicles," Energies, MDPI, vol. 4(11), pages 1-18, October.
- Li, Zhirun & Xiong, Rui & Mu, Hao & He, Hongwen & Wang, Chun, 2017. "A novel parameter and state-of-charge determining method of lithium-ion battery for electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 363-371.
- Liu, Zhentong & He, Hongwen, 2017. "Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter," Applied Energy, Elsevier, vol. 185(P2), pages 2033-2044.
- Ouyang, Minggao & Feng, Xuning & Han, Xuebing & Lu, Languang & Li, Zhe & He, Xiangming, 2016. "A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery," Applied Energy, Elsevier, vol. 165(C), pages 48-59.
- Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
- Zheng, Changwen & Chen, Ziqiang & Huang, Deyang, 2020. "Fault diagnosis of voltage sensor and current sensor for lithium-ion battery pack using hybrid system modeling and unscented particle filter," Energy, Elsevier, vol. 191(C).
- Chen, Zeyu & Zhang, Qing & Lu, Jiahuan & Bi, Jiangman, 2019. "Optimization-based method to develop practical driving cycle for application in electric vehicle power management: A case study in Shenyang, China," Energy, Elsevier, vol. 186(C).
- Wang, Zhenpo & Hong, Jichao & Liu, Peng & Zhang, Lei, 2017. "Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles," Applied Energy, Elsevier, vol. 196(C), pages 289-302.
- Yu, Quanqing & Xiong, Rui & Yang, Ruixin & Pecht, Michael G., 2019. "Online capacity estimation for lithium-ion batteries through joint estimation method," Applied Energy, Elsevier, vol. 255(C).
- Feng, Xuning & Weng, Caihao & Ouyang, Minggao & Sun, Jing, 2016. "Online internal short circuit detection for a large format lithium ion battery," Applied Energy, Elsevier, vol. 161(C), pages 168-180.
- Jaguemont, J. & Boulon, L. & Dubé, Y., 2016. "A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures," Applied Energy, Elsevier, vol. 164(C), pages 99-114.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
- Zhang, Kaimei & Wang, Shaohua & Shi, Dehua & Yin, Chunfang & Shi, Yupeng & Huang, Huanming, 2024. "Research on fault diagnosis of multi-mode electromechanical compound transmission system for hybrid electric vehicle based on global analytical redundancy relations," Energy, Elsevier, vol. 310(C).
- Grzegorz Karoń, 2022. "Safe and Effective Smart Urban Transportation—Energy Flow in Electric (EV) and Hybrid Electric Vehicles (HEV)," Energies, MDPI, vol. 15(18), pages 1-8, September.
- Zhang, Shuzhi & Jiang, Shiyong & Wang, Hongxia & Zhang, Xiongwen, 2022. "A novel dual time-scale voltage sensor fault detection and isolation method for series-connected lithium-ion battery pack," Applied Energy, Elsevier, vol. 322(C).
- Zhao, Xinze & Sun, Bingxiang & Zhang, Weige & He, Xitian & Ma, Shichang & Zhang, Junwei & Liu, Xiaopeng, 2024. "Error theory study on EKF-based SOC and effective error estimation strategy for Li-ion batteries," Applied Energy, Elsevier, vol. 353(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
- Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
- Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
- Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Zhang, Shuzhi & Jiang, Shiyong & Wang, Hongxia & Zhang, Xiongwen, 2022. "A novel dual time-scale voltage sensor fault detection and isolation method for series-connected lithium-ion battery pack," Applied Energy, Elsevier, vol. 322(C).
- Xu, Yiming & Ge, Xiaohua & Guo, Ruohan & Shen, Weixiang, 2025. "Recent advances in model-based fault diagnosis for lithium-ion batteries: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
- Sun, Zhenyu & Han, Yang & Wang, Zhenpo & Chen, Yong & Liu, Peng & Qin, Zian & Zhang, Zhaosheng & Wu, Zhiqiang & Song, Chunbao, 2022. "Detection of voltage fault in the battery system of electric vehicles using statistical analysis," Applied Energy, Elsevier, vol. 307(C).
- Hong, Jichao & Wang, Zhenpo & Yao, Yongtao, 2019. "Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Kang, Yongzhe & Duan, Bin & Zhou, Zhongkai & Shang, Yunlong & Zhang, Chenghui, 2020. "Online multi-fault detection and diagnosis for battery packs in electric vehicles," Applied Energy, Elsevier, vol. 259(C).
- Feng, Xuning & Zheng, Siqi & Ren, Dongsheng & He, Xiangming & Wang, Li & Cui, Hao & Liu, Xiang & Jin, Changyong & Zhang, Fangshu & Xu, Chengshan & Hsu, Hungjen & Gao, Shang & Chen, Tianyu & Li, Yalun , 2019. "Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database," Applied Energy, Elsevier, vol. 246(C), pages 53-64.
- Bosong Zou & Lisheng Zhang & Xiaoqing Xue & Rui Tan & Pengchang Jiang & Bin Ma & Zehua Song & Wei Hua, 2023. "A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles," Energies, MDPI, vol. 16(14), pages 1-19, July.
- Jichao Hong & Zhenpo Wang & Peng Liu, 2017. "Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-16, July.
- Peng Liu & Zhenyu Sun & Zhenpo Wang & Jin Zhang, 2018. "Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 11(1), pages 1-15, January.
- Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Bingyu Sang & Zaijun Wu & Bo Yang & Junjie Wei & Youhong Wan, 2024. "Joint Estimation of SOC and SOH for Lithium-Ion Batteries Based on Dual Adaptive Central Difference H-Infinity Filter," Energies, MDPI, vol. 17(7), pages 1-16, March.
- Xin Lai & Ming Yuan & Xiaopeng Tang & Yi Yao & Jiahui Weng & Furong Gao & Weiguo Ma & Yuejiu Zheng, 2022. "Co-Estimation of State-of-Charge and State-of-Health for Lithium-Ion Batteries Considering Temperature and Ageing," Energies, MDPI, vol. 15(19), pages 1-20, October.
- Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
- Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
- Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
- Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).
More about this item
Keywords
battery management system; sensor fault diagnosis; fault-tolerant control; state of charge; open-circuit voltage; multiple residuals;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:829-:d:493903. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.