IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7338-d934589.html
   My bibliography  Save this article

Operation and Maintenance Optimization for Manufacturing Systems with Energy Management

Author

Listed:
  • Xiangxin An

    (State Key Laboratory of Mechanical System and Vibration, Department of Industrial Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Guojin Si

    (State Key Laboratory of Mechanical System and Vibration, Department of Industrial Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Tangbin Xia

    (State Key Laboratory of Mechanical System and Vibration, Department of Industrial Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Qinming Liu

    (Department of Industrial Engineering, Business School, University of Shanghai for Science & Technology, Shanghai 200093, China)

  • Yaping Li

    (Department of Management Science and Engineering, College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China)

  • Rui Miao

    (School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

With the increasing attention paid to sustainable development around the world, improving energy efficiency and applying effective means of energy saving have gradually received worldwide attention. As the largest energy consumers, manufacturing industries are also inevitably facing pressures on energy optimization evolution from both governments and competitors. The rational optimization of energy consumption in industrial operation activities can significantly improve the sustainability level of the company. Among these enterprise activities, operation and maintenance (O&M) of manufacturing systems are considered to have the most prospects for energy optimization. The diversity of O&M activities and system structures also expands the research space for it. However, the energy consumption optimization of manufacturing systems faces several challenges: the dynamics of manufacturing activities, the complexity of system structures, and the diverse interpretation of energy-optimization definitions. To address these issues, we review the existing O&M optimization approaches with energy management and divide them into several operation levels. This paper addresses current research development on O&M optimization with energy-management considerations from single-machine, production-line, factory, and supply-chain levels. Finally, it discusses recent research trends in O&M optimization with energy-management considerations in manufacturing systems.

Suggested Citation

  • Xiangxin An & Guojin Si & Tangbin Xia & Qinming Liu & Yaping Li & Rui Miao, 2022. "Operation and Maintenance Optimization for Manufacturing Systems with Energy Management," Energies, MDPI, vol. 15(19), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7338-:d:934589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7338/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7338/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. MohammadMohsen Aghelinejad & Yassine Ouazene & Alice Yalaoui, 2018. "Production scheduling optimisation with machine state and time-dependent energy costs," International Journal of Production Research, Taylor & Francis Journals, vol. 56(16), pages 5558-5575, August.
    2. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    3. Smarra, Francesco & Jain, Achin & de Rubeis, Tullio & Ambrosini, Dario & D’Innocenzo, Alessandro & Mangharam, Rahul, 2018. "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, Elsevier, vol. 226(C), pages 1252-1272.
    4. Mao Tan & Bin Duan & Yongxin Su, 2018. "Economic batch sizing and scheduling on parallel machines under time-of-use electricity pricing," Operational Research, Springer, vol. 18(1), pages 105-122, April.
    5. Xia, Tangbin & Si, Guojin & Shi, Guo & Zhang, Kaigan & Xi, Lifeng, 2022. "Optimal selective maintenance scheduling for series–parallel systems based on energy efficiency optimization," Applied Energy, Elsevier, vol. 314(C).
    6. Junfeng Wang & Zicheng Fei & Qing Chang & Shiqi Li, 2019. "Energy Saving Operation of Manufacturing System Based on Dynamic Adaptive Fuzzy Reasoning Petri Net," Energies, MDPI, vol. 12(11), pages 1-17, June.
    7. He, Keyan & Tang, Renzhong & Jin, Mingzhou, 2017. "Pareto fronts of machining parameters for trade-off among energy consumption, cutting force and processing time," International Journal of Production Economics, Elsevier, vol. 185(C), pages 113-127.
    8. Artigues, Christian & Lopez, Pierre & Haït, Alain, 2013. "The energy scheduling problem: Industrial case-study and constraint propagation techniques," International Journal of Production Economics, Elsevier, vol. 143(1), pages 13-23.
    9. Fernandez, Mayela & Li, Lin & Sun, Zeyi, 2013. "“Just-for-Peak” buffer inventory for peak electricity demand reduction of manufacturing systems," International Journal of Production Economics, Elsevier, vol. 146(1), pages 178-184.
    10. Junbo Tuo & Fei Liu & Peiji Liu, 2019. "Key performance indicators for assessing inherent energy performance of machine tools in industries," International Journal of Production Research, Taylor & Francis Journals, vol. 57(6), pages 1811-1824, March.
    11. Kan Fang & Nelson A. Uhan & Fu Zhao & John W. Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    12. Kan Fang & Nelson Uhan & Fu Zhao & John Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    13. Xia, Tangbin & Jin, Xiaoning & Xi, Lifeng & Ni, Jun, 2015. "Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling," European Journal of Operational Research, Elsevier, vol. 240(3), pages 781-790.
    14. Yin, Hui & Zhang, Guojun & Zhu, Haiping & Deng, Yuhao & He, Fei, 2015. "An integrated model of statistical process control and maintenance based on the delayed monitoring," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 323-333.
    15. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    16. Ke, Jing & Price, Lynn & Ohshita, Stephanie & Fridley, David & Khanna, Nina Zheng & Zhou, Nan & Levine, Mark, 2012. "China's industrial energy consumption trends and impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects," Energy Policy, Elsevier, vol. 50(C), pages 562-569.
    17. Bill Hopwood & Mary Mellor & Geoff O'Brien, 2005. "Sustainable development: mapping different approaches," Sustainable Development, John Wiley & Sons, Ltd., vol. 13(1), pages 38-52.
    18. Feng, Hanxin & Xi, Lifeng & Xiao, Lei & Xia, Tangbin & Pan, Ershun, 2018. "Imperfect preventive maintenance optimization for flexible flowshop manufacturing cells considering sequence-dependent group scheduling," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 218-229.
    19. Masmoudi, Oussama & Delorme, Xavier & Gianessi, Paolo, 2019. "Job-shop scheduling problem with energy consideration," International Journal of Production Economics, Elsevier, vol. 216(C), pages 12-22.
    20. Shijin Wang & Zhanguo Zhu & Kan Fang & Feng Chu & Chengbin Chu, 2018. "Scheduling on a two-machine permutation flow shop under time-of-use electricity tariffs," International Journal of Production Research, Taylor & Francis Journals, vol. 56(9), pages 3173-3187, May.
    21. Xiaojun Zhou & Zhiqiang Lu & Lifeng Xi, 2010. "A dynamic opportunistic preventive maintenance policy for multi-unit series systems with intermediate buffers," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 6(3), pages 276-288.
    22. Zhou, Shengchao & Jin, Mingzhou & Du, Ni, 2020. "Energy-efficient scheduling of a single batch processing machine with dynamic job arrival times," Energy, Elsevier, vol. 209(C).
    23. Chen, Xingzheng & Li, Congbo & Tang, Ying & Li, Li & Du, Yanbin & Li, Lingling, 2019. "Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time," Energy, Elsevier, vol. 175(C), pages 1021-1037.
    24. Xia, Tangbin & Dong, Yifan & Xiao, Lei & Du, Shichang & Pan, Ershun & Xi, Lifeng, 2018. "Recent advances in prognostics and health management for advanced manufacturing paradigms," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 255-268.
    25. Bruns, Peter, 2002. "Optimal maintenance strategies for systems with partial repair options and without assuming bounded costs," European Journal of Operational Research, Elsevier, vol. 139(1), pages 146-165, May.
    26. Macrina, Giusy & Laporte, Gilbert & Guerriero, Francesca & Di Puglia Pugliese, Luigi, 2019. "An energy-efficient green-vehicle routing problem with mixed vehicle fleet, partial battery recharging and time windows," European Journal of Operational Research, Elsevier, vol. 276(3), pages 971-982.
    27. Oikonomou, V. & Becchis, F. & Steg, L. & Russolillo, D., 2009. "Energy saving and energy efficiency concepts for policy making," Energy Policy, Elsevier, vol. 37(11), pages 4787-4796, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Xiangxin & Si, Guojin & Xia, Tangbin & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2023. "An energy-efficient collaborative strategy of maintenance planning and production scheduling for serial-parallel systems under time-of-use tariffs," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    2. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2021. "Job Scheduling under Time-of-Use Energy Tariffs for Sustainable Manufacturing: A Survey," LIDAM Discussion Papers CORE 2021019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Gaggero, Mauro & Paolucci, Massimo & Ronco, Roberto, 2023. "Exact and heuristic solution approaches for energy-efficient identical parallel machine scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 311(3), pages 845-866.
    4. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    5. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
    6. Michal Penn & Tal Raviv, 2021. "Complexity and algorithms for min cost and max profit scheduling under time-of-use electricity tariffs," Journal of Scheduling, Springer, vol. 24(1), pages 83-102, February.
    7. Peng Wu & Junheng Cheng & Feng Chu, 2021. "Large-scale energy-conscious bi-objective single-machine batch scheduling under time-of-use electricity tariffs via effective iterative heuristics," Annals of Operations Research, Springer, vol. 296(1), pages 471-494, January.
    8. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    9. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    10. Tian, Zheng & Zheng, Li, 2024. "Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and optimisation approaches," European Journal of Operational Research, Elsevier, vol. 312(2), pages 512-524.
    11. Aghelinejad, MohammadMohsen & Ouazene, Yassine & Yalaoui, Alice, 2019. "Complexity analysis of energy-efficient single machine scheduling problems," Operations Research Perspectives, Elsevier, vol. 6(C).
    12. Sinisterra, Wilfrido Quiñones & Cavalcante, Cristiano Alexandre Virgínio, 2020. "An integrated model of production scheduling and inspection planning for resumable jobs," International Journal of Production Economics, Elsevier, vol. 227(C).
    13. Xiao, Lei & Zhang, Xinghui & Tang, Junxuan & Zhou, Yaqin, 2020. "Joint optimization of opportunistic maintenance and production scheduling considering batch production mode and varying operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    14. Shun Jia & Yang Yang & Shuyu Li & Shang Wang & Anbang Li & Wei Cai & Yang Liu & Jian Hao & Luoke Hu, 2024. "The Green Flexible Job-Shop Scheduling Problem Considering Cost, Carbon Emissions, and Customer Satisfaction under Time-of-Use Electricity Pricing," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    15. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    16. An, Xiangxin & Si, Guojin & Xia, Tangbin & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2023. "An energy-efficient collaborative strategy of maintenance planning and production scheduling for serial-parallel systems under time-of-use tariffs," Applied Energy, Elsevier, vol. 336(C).
    17. Park, Myoung-Ju & Ham, Andy, 2022. "Energy-aware flexible job shop scheduling under time-of-use pricing," International Journal of Production Economics, Elsevier, vol. 248(C).
    18. Lin Chen & Nicole Megow & Roman Rischke & Leen Stougie & José Verschae, 2021. "Optimal algorithms for scheduling under time-of-use tariffs," Annals of Operations Research, Springer, vol. 304(1), pages 85-107, September.
    19. Abbas Hamze & Yassine Ouazene & Nazir Chebbo & Imane Maatouk, 2019. "Multisources of Energy Contracting Strategy with an Ecofriendly Factor and Demand Uncertainties," Energies, MDPI, vol. 12(20), pages 1-24, October.
    20. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7338-:d:934589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.