IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v240y2015i3p781-790.html
   My bibliography  Save this article

Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling

Author

Listed:
  • Xia, Tangbin
  • Jin, Xiaoning
  • Xi, Lifeng
  • Ni, Jun

Abstract

Nowadays, modern production patterns, such as batch production, have brought new challenges for multi-unit maintenance decision-making. The maintenance scheduling should not only consider individual machine deterioration, but also apply to batch production with variable lot size. An interactive bi-level maintenance strategy is thus proposed in a multi-unit batch production system with degrading machines. In the machine-level scheduling, a multi-attribute model (MAM) is used to obtain maintenance intervals according to individual machine degradation. In the system-level scheduling, a novel production-driven opportunistic maintenance strategy is developed by considering both machine degradation and characteristics of batch production. In this strategy, advance-postpone balancing (APB) utilizes set-up times as opportunities to make real-time schedules for system-level maintenance. The numerical example shows that the proposed MAM–APB methodology can efficiently eliminate unnecessary production breaks, achieve significant cost reduction and overcome complexity of system scheduling.

Suggested Citation

  • Xia, Tangbin & Jin, Xiaoning & Xi, Lifeng & Ni, Jun, 2015. "Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling," European Journal of Operational Research, Elsevier, vol. 240(3), pages 781-790.
  • Handle: RePEc:eee:ejores:v:240:y:2015:i:3:p:781-790
    DOI: 10.1016/j.ejor.2014.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714006201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Zhiyi & Chen, Yong & Zhang, An, 2011. "Parallel machines scheduling with machine maintenance for minsum criteria," European Journal of Operational Research, Elsevier, vol. 212(2), pages 287-292, July.
    2. Anzanello, Michel J. & Albin, Susan L. & Chaovalitwongse, Wanpracha A., 2012. "Multicriteria variable selection for classification of production batches," European Journal of Operational Research, Elsevier, vol. 218(1), pages 97-105.
    3. Bana e Costa, Carlos A. & Carnero, María Carmen & Oliveira, Mónica Duarte, 2012. "A multi-criteria model for auditing a Predictive Maintenance Programme," European Journal of Operational Research, Elsevier, vol. 217(2), pages 381-393.
    4. Mellouli, Racem & Sadfi, Chrif & Chu, Chengbin & Kacem, Imed, 2009. "Identical parallel-machine scheduling under availability constraints to minimize the sum of completion times," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1150-1165, September.
    5. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    6. Allaoui, H. & Lamouri, S. & Artiba, A. & Aghezzaf, E., 2008. "Simultaneously scheduling n jobs and the preventive maintenance on the two-machine flow shop to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 112(1), pages 161-167, March.
    7. Cárdenas-Barrón, Leopoldo Eduardo, 2009. "On optimal batch sizing in a multi-stage production system with rework consideration," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1238-1244, August.
    8. Rommert Dekker & Ralph Wildeman & Frank Duyn Schouten, 1997. "A review of multi-component maintenance models with economic dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(3), pages 411-435, October.
    9. Ruiz-Castro, Juan Eloy & Li, Quan-Lin, 2011. "Algorithm for a general discrete k-out-of-n: G system subject to several types of failure with an indefinite number of repairpersons," European Journal of Operational Research, Elsevier, vol. 211(1), pages 97-111, May.
    10. Chen, Wen-Jinn, 2009. "Minimizing number of tardy jobs on a single machine subject to periodic maintenance," Omega, Elsevier, vol. 37(3), pages 591-599, June.
    11. Wildeman, R. E. & Dekker, R. & Smit, A. C. J. M., 1997. "A dynamic policy for grouping maintenance activities," European Journal of Operational Research, Elsevier, vol. 99(3), pages 530-551, June.
    12. Liao, Ching-Jong & Shyur, Der-Lin & Lin, Chien-Hung, 2005. "Makespan minimization for two parallel machines with an availability constraint," European Journal of Operational Research, Elsevier, vol. 160(2), pages 445-456, January.
    13. Bedford, Tim & Dewan, Isha & Meilijson, Isaac & Zitrou, Athena, 2011. "The signal model: A model for competing risks of opportunistic maintenance," European Journal of Operational Research, Elsevier, vol. 214(3), pages 665-673, November.
    14. Chen, Jen-Shiang, 2008. "Scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan," European Journal of Operational Research, Elsevier, vol. 190(1), pages 90-102, October.
    15. W J Chen, 2006. "Minimizing total flow time in the single-machine scheduling problem with periodic maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 410-415, April.
    16. Rachaniotis, N.P. & Pappis, C.P., 2008. "Preventive maintenance and upgrade system: Optimizing the whole performance system by components' replacement or rearrangement," International Journal of Production Economics, Elsevier, vol. 112(1), pages 236-244, March.
    17. Topal, Erkan & Ramazan, Salih, 2010. "A new MIP model for mine equipment scheduling by minimizing maintenance cost," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1065-1071, December.
    18. Xia, Tangbin & Xi, Lifeng & Zhou, Xiaojun & Lee, Jay, 2012. "Dynamic maintenance decision-making for series–parallel manufacturing system based on MAM–MTW methodology," European Journal of Operational Research, Elsevier, vol. 221(1), pages 231-240.
    19. Li, Shanling, 1997. "A hybrid two-stage flowshop with part family, batch production, major and minor set-ups," European Journal of Operational Research, Elsevier, vol. 102(1), pages 142-156, October.
    20. Sun, Kaibiao & Li, Hongxing, 2010. "Scheduling problems with multiple maintenance activities and non-preemptive jobs on two identical parallel machines," International Journal of Production Economics, Elsevier, vol. 124(1), pages 151-158, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Tangbin & Xi, Lifeng & Zhou, Xiaojun & Lee, Jay, 2012. "Dynamic maintenance decision-making for series–parallel manufacturing system based on MAM–MTW methodology," European Journal of Operational Research, Elsevier, vol. 221(1), pages 231-240.
    2. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    3. Xia, Tangbin & Xi, Lifeng & Pan, Ershun & Ni, Jun, 2017. "Reconfiguration-oriented opportunistic maintenance policy for reconfigurable manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 87-98.
    4. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.
    5. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    6. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    7. Do Van, Phuc & Barros, Anne & Bérenguer, Christophe & Bouvard, Keomany & Brissaud, Florent, 2013. "Dynamic grouping maintenance with time limited opportunities," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 51-59.
    8. Liu, Gehui & Chen, Shaokuan & Jin, Hua & Liu, Shuang, 2021. "Optimum opportunistic maintenance schedule incorporating delay time theory with imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Behrooz Shahbazi & Seyed Habib A. Rahmati, 2021. "Developing a Flexible Manufacturing Control System Considering Mixed Uncertain Predictive Maintenance Model: a Simulation-Based Optimization Approach," SN Operations Research Forum, Springer, vol. 2(4), pages 1-43, December.
    10. Feng, Hanxin & Xi, Lifeng & Xiao, Lei & Xia, Tangbin & Pan, Ershun, 2018. "Imperfect preventive maintenance optimization for flexible flowshop manufacturing cells considering sequence-dependent group scheduling," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 218-229.
    11. Briskorn, Dirk & Gönsch, Jochen & Thiemeyer, Antonia, 2024. "Scheduling maintenance activities subject to stochastic job-dependent machine deterioration," European Journal of Operational Research, Elsevier, vol. 319(1), pages 62-78.
    12. Pascual, R. & Meruane, V. & Rey, P.A., 2008. "On the effect of downtime costs and budget constraint on preventive and replacement policies," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 144-151.
    13. Nesello, Vitor & Subramanian, Anand & Battarra, Maria & Laporte, Gilbert, 2018. "Exact solution of the single-machine scheduling problem with periodic maintenances and sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 266(2), pages 498-507.
    14. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    15. Zhou, Xiaojun & Lu, Zhiqiang & Xi, Lifeng, 2012. "Preventive maintenance optimization for a multi-component system under changing job shop schedule," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 14-20.
    16. Xia, Tangbin & Dong, Yifan & Xiao, Lei & Du, Shichang & Pan, Ershun & Xi, Lifeng, 2018. "Recent advances in prognostics and health management for advanced manufacturing paradigms," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 255-268.
    17. Van Horenbeek, Adriaan & Pintelon, Liliane, 2013. "A dynamic predictive maintenance policy for complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 39-50.
    18. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    19. Ayse Sena Eruguz & Tarkan Tan & Geert‐Jan van Houtum, 2017. "Optimizing usage and maintenance decisions for k‐out‐of‐n systems of moving assets," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 418-434, August.
    20. Yunqiang Yin & Jianyou Xu & T. C. E. Cheng & Chin‐Chia Wu & Du‐Juan Wang, 2016. "Approximation schemes for single‐machine scheduling with a fixed maintenance activity to minimize the total amount of late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 172-183, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:240:y:2015:i:3:p:781-790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.