IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v216y2019icp12-22.html
   My bibliography  Save this article

Job-shop scheduling problem with energy consideration

Author

Listed:
  • Masmoudi, Oussama
  • Delorme, Xavier
  • Gianessi, Paolo

Abstract

These days, rising energy costs along with general concerns about major environmental issues (global warming, climate change), result in more and more strict production constraints for the industrial sector, which is known to be the first energy consumer and greenhouse gas emitter in the world. There is therefore a growing industrial need to address the problems of production systems related to energy aspects.

Suggested Citation

  • Masmoudi, Oussama & Delorme, Xavier & Gianessi, Paolo, 2019. "Job-shop scheduling problem with energy consideration," International Journal of Production Economics, Elsevier, vol. 216(C), pages 12-22.
  • Handle: RePEc:eee:proeco:v:216:y:2019:i:c:p:12-22
    DOI: 10.1016/j.ijpe.2019.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527319301173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2019.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gökan May & Bojan Stahl & Marco Taisch & Vittal Prabhu, 2015. "Multi-objective genetic algorithm for energy-efficient job shop scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 7071-7089, December.
    2. Mansouri, S. Afshin & Aktas, Emel & Besikci, Umut, 2016. "Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption," European Journal of Operational Research, Elsevier, vol. 248(3), pages 772-788.
    3. Artigues, Christian & Lopez, Pierre & Haït, Alain, 2013. "The energy scheduling problem: Industrial case-study and constraint propagation techniques," International Journal of Production Economics, Elsevier, vol. 143(1), pages 13-23.
    4. Fernandez, Mayela & Li, Lin & Sun, Zeyi, 2013. "“Just-for-Peak” buffer inventory for peak electricity demand reduction of manufacturing systems," International Journal of Production Economics, Elsevier, vol. 146(1), pages 178-184.
    5. Beck, F. G. & Biel, K. & Glock, C. H., 2019. "Integration of energy aspects into the economic lot scheduling Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 119051, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Rapine, Christophe & Penz, Bernard & Gicquel, Céline & Akbalik, Ayse, 2018. "Capacity acquisition for the single-item lot sizing problem under energy constraints," Omega, Elsevier, vol. 81(C), pages 112-122.
    7. Oussama Masmoudi & Alice Yalaoui & Yassine Ouazene & Hicham Chehade, 2017. "Lot-sizing in a multi-stage flow line production system with energy consideration," International Journal of Production Research, Taylor & Francis Journals, vol. 55(6), pages 1640-1663, March.
    8. Sylverin Kemmoe & Damien Lamy & Nikolay Tchernev, 2017. "Job-shop like manufacturing system with variable power threshold and operations with power requirements," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6011-6032, October.
    9. Zavanella, Lucio & Zanoni, Simone & Ferretti, Ivan & Mazzoldi, Laura, 2015. "Energy demand in production systems: A Queuing Theory perspective," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 393-400.
    10. Liu, Ying & Dong, Haibo & Lohse, Niels & Petrovic, Sanja, 2016. "A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance," International Journal of Production Economics, Elsevier, vol. 179(C), pages 259-272.
    11. Wang, Yong & Li, Lin, 2013. "Time-of-use based electricity demand response for sustainable manufacturing systems," Energy, Elsevier, vol. 63(C), pages 233-244.
    12. Alan S. Manne, 1960. "On the Job-Shop Scheduling Problem," Operations Research, INFORMS, vol. 8(2), pages 219-223, April.
    13. Edward H. Bowman, 1959. "The Schedule-Sequencing Problem," Operations Research, INFORMS, vol. 7(5), pages 621-624, October.
    14. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    15. Beck, Fabian G. & Biel, Konstantin & Glock, Christoph H., 2019. "Integration of energy aspects into the economic lot scheduling problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 399-410.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annear, Luis Mauricio & Akhavan-Tabatabaei, Raha & Schmid, Verena, 2023. "Dynamic assignment of a multi-skilled workforce in job shops: An approximate dynamic programming approach," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1109-1125.
    2. Ivan Ferretti & Matteo Camparada & Lucio Enrico Zavanella, 2022. "Queuing Theory-Based Design Methods for the Definition of Power Requirements in Manufacturing Systems," Energies, MDPI, vol. 15(20), pages 1-14, October.
    3. Min Dai & Ziwei Zhang & Adriana Giret & Miguel A. Salido, 2019. "An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints," Sustainability, MDPI, vol. 11(11), pages 1-23, May.
    4. Park, Myoung-Ju & Ham, Andy, 2022. "Energy-aware flexible job shop scheduling under time-of-use pricing," International Journal of Production Economics, Elsevier, vol. 248(C).
    5. Xiangxin An & Guojin Si & Tangbin Xia & Qinming Liu & Yaping Li & Rui Miao, 2022. "Operation and Maintenance Optimization for Manufacturing Systems with Energy Management," Energies, MDPI, vol. 15(19), pages 1-19, October.
    6. João M. R. C. Fernandes & Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2022. "Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
    7. Delorme, Xavier & Cerqueus, Audrey & Gianessi, Paolo & Lamy, Damien, 2023. "RMS balancing and planning under uncertain demand and energy cost considerations," International Journal of Production Economics, Elsevier, vol. 261(C).
    8. Rami Naimi & Maroua Nouiri & Olivier Cardin, 2021. "A Q-Learning Rescheduling Approach to the Flexible Job Shop Problem Combining Energy and Productivity Objectives," Sustainability, MDPI, vol. 13(23), pages 1-36, November.
    9. Tian, Zheng & Zheng, Li, 2024. "Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and optimisation approaches," European Journal of Operational Research, Elsevier, vol. 312(2), pages 512-524.
    10. Sinisterra, Wilfrido Quiñones & Cavalcante, Cristiano Alexandre Virgínio, 2020. "An integrated model of production scheduling and inspection planning for resumable jobs," International Journal of Production Economics, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    2. Matthias Gerhard Wichmann & Christoph Johannes & Thomas Stefan Spengler, 2019. "An extension of the general lot-sizing and scheduling problem (GLSP) with time-dependent energy prices," Journal of Business Economics, Springer, vol. 89(5), pages 481-514, July.
    3. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    4. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    5. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    6. Ivan Ferretti & Matteo Camparada & Lucio Enrico Zavanella, 2022. "Queuing Theory-Based Design Methods for the Definition of Power Requirements in Manufacturing Systems," Energies, MDPI, vol. 15(20), pages 1-14, October.
    7. Park, Myoung-Ju & Ham, Andy, 2022. "Energy-aware flexible job shop scheduling under time-of-use pricing," International Journal of Production Economics, Elsevier, vol. 248(C).
    8. Beck, Fabian G. & Biel, Konstantin & Glock, Christoph H., 2019. "Integration of energy aspects into the economic lot scheduling problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 399-410.
    9. Wang, Yong & Li, Lin, 2014. "Time-of-use based electricity cost of manufacturing systems: Modeling and monotonicity analysis," International Journal of Production Economics, Elsevier, vol. 156(C), pages 246-259.
    10. Liu, Ying & Dong, Haibo & Lohse, Niels & Petrovic, Sanja, 2016. "A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance," International Journal of Production Economics, Elsevier, vol. 179(C), pages 259-272.
    11. Zhou, Shengchao & Jin, Mingzhou & Du, Ni, 2020. "Energy-efficient scheduling of a single batch processing machine with dynamic job arrival times," Energy, Elsevier, vol. 209(C).
    12. Weiwei Cui & Lin Li & Zhiqiang Lu, 2019. "Energy‐efficient scheduling for sustainable manufacturing systems with renewable energy resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(2), pages 154-173, March.
    13. Anghinolfi, Davide & Paolucci, Massimo & Ronco, Roberto, 2021. "A bi-objective heuristic approach for green identical parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 289(2), pages 416-434.
    14. João M. R. C. Fernandes & Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2022. "Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
    15. Deming Lei & Youlian Zheng & Xiuping Guo, 2017. "A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3126-3140, June.
    16. Rapine, Christophe & Goisque, Guillaume & Akbalik, Ayse, 2018. "Energy-aware lot sizing problem: Complexity analysis and exact algorithms," International Journal of Production Economics, Elsevier, vol. 203(C), pages 254-263.
    17. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    18. Weiwei Cui & Biao Lu, 2020. "A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with Peak Demand Constraint," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    19. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    20. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:216:y:2019:i:c:p:12-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.