IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v304y2021i1d10.1007_s10479-021-04059-3.html
   My bibliography  Save this article

Optimal algorithms for scheduling under time-of-use tariffs

Author

Listed:
  • Lin Chen

    (Texas Tech University)

  • Nicole Megow

    (University of Bremen)

  • Roman Rischke

    (Fraunhofer Heinrich Hertz Institute)

  • Leen Stougie

    (Vrije Universiteit Amsterdam, CWI and Erable-INRIA)

  • José Verschae

    (Pontificia Universidad Católica de Chile)

Abstract

We consider a natural generalization of classical scheduling problems to a setting in which using a time unit for processing a job causes some time-dependent cost, the time-of-use tariff, which must be paid in addition to the standard scheduling cost. We focus on preemptive single-machine scheduling and two classical scheduling cost functions, the sum of (weighted) completion times and the maximum completion time, that is, the makespan. While these problems are easy to solve in the classical scheduling setting, they are considerably more complex when time-of-use tariffs must be considered. We contribute optimal polynomial-time algorithms and best possible approximation algorithms. For the problem of minimizing the total (weighted) completion time on a single machine, we present a polynomial-time algorithm that computes for any given sequence of jobs an optimal schedule, i.e., the optimal set of time slots to be used for preemptively scheduling jobs according to the given sequence. This result is based on dynamic programming using a subtle analysis of the structure of optimal solutions and a potential function argument. With this algorithm, we solve the unweighted problem optimally in polynomial time. For the more general problem, in which jobs may have individual weights, we develop a polynomial-time approximation scheme (PTAS) based on a dual scheduling approach introduced for scheduling on a machine of varying speed. As the weighted problem is strongly NP-hard, our PTAS is the best possible approximation we can hope for. For preemptive scheduling to minimize the makespan, we show that there is a comparably simple optimal algorithm with polynomial running time. This is true even in a certain generalized model with unrelated machines.

Suggested Citation

  • Lin Chen & Nicole Megow & Roman Rischke & Leen Stougie & José Verschae, 2021. "Optimal algorithms for scheduling under time-of-use tariffs," Annals of Operations Research, Springer, vol. 304(1), pages 85-107, September.
  • Handle: RePEc:spr:annopr:v:304:y:2021:i:1:d:10.1007_s10479-021-04059-3
    DOI: 10.1007/s10479-021-04059-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04059-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04059-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, J.J. & Lin, Y.X. & Ng, C.T. & Cheng, T.C.E., 2007. "Approximability of single machine scheduling with fixed jobs to minimize total completion time," European Journal of Operational Research, Elsevier, vol. 178(1), pages 46-56, April.
    2. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    3. Guoqing Wang & Hongyi Sun & Chengbin Chu, 2005. "Preemptive Scheduling with Availability Constraints to Minimize Total Weighted Completion Times," Annals of Operations Research, Springer, vol. 133(1), pages 183-192, January.
    4. Kan Fang & Nelson A. Uhan & Fu Zhao & John W. Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    5. Kan Fang & Nelson Uhan & Fu Zhao & John Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    6. Guohua Wan & Xiangtong Qi, 2010. "Scheduling with variable time slot costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(2), pages 159-171, March.
    7. W. L. Eastman & S. Even & I. M. Isaacs, 1964. "Bounds for the Optimal Scheduling of n Jobs on m Processors," Management Science, INFORMS, vol. 11(2), pages 268-279, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaggero, Mauro & Paolucci, Massimo & Ronco, Roberto, 2023. "Exact and heuristic solution approaches for energy-efficient identical parallel machine scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 311(3), pages 845-866.
    2. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2021. "Job Scheduling under Time-of-Use Energy Tariffs for Sustainable Manufacturing: A Survey," LIDAM Discussion Papers CORE 2021019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    2. Michal Penn & Tal Raviv, 2021. "Complexity and algorithms for min cost and max profit scheduling under time-of-use electricity tariffs," Journal of Scheduling, Springer, vol. 24(1), pages 83-102, February.
    3. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    4. Xiangxin An & Guojin Si & Tangbin Xia & Qinming Liu & Yaping Li & Rui Miao, 2022. "Operation and Maintenance Optimization for Manufacturing Systems with Energy Management," Energies, MDPI, vol. 15(19), pages 1-19, October.
    5. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    6. Gaggero, Mauro & Paolucci, Massimo & Ronco, Roberto, 2023. "Exact and heuristic solution approaches for energy-efficient identical parallel machine scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 311(3), pages 845-866.
    7. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    8. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2021. "Job Scheduling under Time-of-Use Energy Tariffs for Sustainable Manufacturing: A Survey," LIDAM Discussion Papers CORE 2021019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
    10. Shun Jia & Yang Yang & Shuyu Li & Shang Wang & Anbang Li & Wei Cai & Yang Liu & Jian Hao & Luoke Hu, 2024. "The Green Flexible Job-Shop Scheduling Problem Considering Cost, Carbon Emissions, and Customer Satisfaction under Time-of-Use Electricity Pricing," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    11. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    12. Jules Raymond Kala & Didier Michael Kre & Armelle N’Guessan Gnassou & Jean Robert Kamdjoug Kala & Yves Melaine Akpablin Akpablin & Tiorna Coulibaly, 2022. "Assets management on electrical grid using Faster-RCNN," Annals of Operations Research, Springer, vol. 308(1), pages 307-320, January.
    13. Wu, Xueqi & Che, Ada, 2020. "Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search," Omega, Elsevier, vol. 94(C).
    14. Wu, Xueqi & Che, Ada, 2019. "A memetic differential evolution algorithm for energy-efficient parallel machine scheduling," Omega, Elsevier, vol. 82(C), pages 155-165.
    15. Tian, Zheng & Zheng, Li, 2024. "Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and optimisation approaches," European Journal of Operational Research, Elsevier, vol. 312(2), pages 512-524.
    16. Ruilin Pan & Qiong Wang & Zhenghong Li & Jianhua Cao & Yongjin Zhang, 2022. "Steelmaking-continuous casting scheduling problem with multi-position refining furnaces under time-of-use tariffs," Annals of Operations Research, Springer, vol. 310(1), pages 119-151, March.
    17. Aghelinejad, MohammadMohsen & Ouazene, Yassine & Yalaoui, Alice, 2019. "Complexity analysis of energy-efficient single machine scheduling problems," Operations Research Perspectives, Elsevier, vol. 6(C).
    18. Peng Wu & Junheng Cheng & Feng Chu, 2021. "Large-scale energy-conscious bi-objective single-machine batch scheduling under time-of-use electricity tariffs via effective iterative heuristics," Annals of Operations Research, Springer, vol. 296(1), pages 471-494, January.
    19. Hongliang Zhang & Yujuan Wu & Ruilin Pan & Gongjie Xu, 2021. "Two-stage parallel speed-scaling machine scheduling under time-of-use tariffs," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 91-112, January.
    20. Kan Fang & Nelson Uhan & Fu Zhao & John Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:304:y:2021:i:1:d:10.1007_s10479-021-04059-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.