IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v56y2018i16p5558-5575.html
   My bibliography  Save this article

Production scheduling optimisation with machine state and time-dependent energy costs

Author

Listed:
  • MohammadMohsen Aghelinejad
  • Yassine Ouazene
  • Alice Yalaoui

Abstract

The increase of energy costs specially in manufacturing system encourages researchers to pay more attention to energy management in different ways. This paper investigates a non-preemptive single-machine manufacturing environment to reduce total energy costs of a production system. For this purpose, two new mathematical models are presented. The first contribution consists of an improvement of a mathematical formulation proposed in the literature which deals and deals with a scheduling problem at machine level to process the jobs in a predetermined order. The second model focuses on the generalisation of the previous one to deal simultaneously with the production scheduling at machine level as well as job level. So, the initial predetermined fixed sequence assumption is removed. Since this problem is NP-hard, an heuristic algorithm and a genetic algorithm based on the second model are developed to provide good solutions in reasonable computational time. Finally, the effectiveness of the proposed models and optimisation methods have been tested with different numerical experiments. In average, for small size instances which the mathematical model provides a solution in reasonable computational time, a gap of 2.2% for the heuristic and 1.82% for GA are achieved comparing to the exact method’s solution. These results demonstrate the accuracy and efficiency of both proposed algorithms.

Suggested Citation

  • MohammadMohsen Aghelinejad & Yassine Ouazene & Alice Yalaoui, 2018. "Production scheduling optimisation with machine state and time-dependent energy costs," International Journal of Production Research, Taylor & Francis Journals, vol. 56(16), pages 5558-5575, August.
  • Handle: RePEc:taf:tprsxx:v:56:y:2018:i:16:p:5558-5575
    DOI: 10.1080/00207543.2017.1414969
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1414969
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1414969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbas Hamze & Yassine Ouazene & Nazir Chebbo & Imane Maatouk, 2019. "Multisources of Energy Contracting Strategy with an Ecofriendly Factor and Demand Uncertainties," Energies, MDPI, vol. 12(20), pages 1-24, October.
    2. Andrzej Bożek, 2020. "Energy Cost-Efficient Task Positioning in Manufacturing Systems," Energies, MDPI, vol. 13(19), pages 1-21, September.
    3. Aghelinejad, MohammadMohsen & Ouazene, Yassine & Yalaoui, Alice, 2019. "Complexity analysis of energy-efficient single machine scheduling problems," Operations Research Perspectives, Elsevier, vol. 6(C).
    4. Park, Myoung-Ju & Ham, Andy, 2022. "Energy-aware flexible job shop scheduling under time-of-use pricing," International Journal of Production Economics, Elsevier, vol. 248(C).
    5. Xiangxin An & Guojin Si & Tangbin Xia & Qinming Liu & Yaping Li & Rui Miao, 2022. "Operation and Maintenance Optimization for Manufacturing Systems with Energy Management," Energies, MDPI, vol. 15(19), pages 1-19, October.
    6. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2021. "Job Scheduling under Time-of-Use Energy Tariffs for Sustainable Manufacturing: A Survey," LIDAM Discussion Papers CORE 2021019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    8. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    9. Mehmet Ali Soytaş & Damla Durak Uşar & Meltem Denizel, 2022. "Estimation of the static corporate sustainability interactions," International Journal of Production Research, Taylor & Francis Journals, vol. 60(4), pages 1245-1264, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:56:y:2018:i:16:p:5558-5575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.