IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v310y2023i3p992-1016.html
   My bibliography  Save this article

Energy cost efficient scheduling in flexible job-shop manufacturing systems

Author

Listed:
  • Shen, Liji
  • Dauzère-Pérès, Stéphane
  • Maecker, Söhnke

Abstract

This paper studies the problem of determining energy efficient schedules in a flexible job shop. The goal is to minimize the total energy cost, given a time-of-use pricing scheme, while ensuring that the schedule does not violate a maximum makespan. The problem is first formalized as a mixed integer program. Because it is already difficult to solve, the simpler problem with a fixed sequence of operations is then extensively studied. Some properties are derived for the specific problem with a fixed sequence. These properties show that the complexity of the problem depends on the structure of the energy pricing scheme. They are also used to propose two heuristic approaches. Relying on these heuristics, we further develop an iterative tabu search for the general problem. Extensive computational experiments are carried out to evaluate the solution methods and the potential gains on the total energy cost, depending on the flexibility associated to the maximum allowed makespan and on the time-of-use structures.

Suggested Citation

  • Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
  • Handle: RePEc:eee:ejores:v:310:y:2023:i:3:p:992-1016
    DOI: 10.1016/j.ejor.2023.03.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723002679
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.03.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    2. Mati, Yazid & Dauzère-Pérès, Stèphane & Lahlou, Chams, 2011. "A general approach for optimizing regular criteria in the job-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 212(1), pages 33-42, July.
    3. Shen, Liji & Dauzère-Pérès, Stéphane & Neufeld, Janis S., 2018. "Solving the flexible job shop scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(2), pages 503-516.
    4. Hua Zhang & Ziwei Dai & Wenyu Zhang & Shuai Zhang & Yan Wang & Rongyu Liu, 2017. "A New Energy-Aware Flexible Job Shop Scheduling Method Using Modified Biogeography-Based Optimization," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-12, August.
    5. Roberto Battiti & Giampietro Tecchiolli, 1994. "The Reactive Tabu Search," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 126-140, May.
    6. Buscher, Udo & Shen, Liji, 2009. "An integrated tabu search algorithm for the lot streaming problem in job shops," European Journal of Operational Research, Elsevier, vol. 199(2), pages 385-399, December.
    7. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    8. Guohua Wan & Xiangtong Qi, 2010. "Scheduling with variable time slot costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(2), pages 159-171, March.
    9. Demirkol, Ebru & Mehta, Sanjay & Uzsoy, Reha, 1998. "Benchmarks for shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 109(1), pages 137-141, August.
    10. Sven Schulz & Udo Buscher & Liji Shen, 2020. "Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices," Journal of Business Economics, Springer, vol. 90(9), pages 1315-1343, November.
    11. Weibo Ren & Jingqian Wen & Yan Yan & Yaoguang Hu & Yu Guan & Jinliang Li, 2021. "Multi-objective optimisation for energy-aware flexible job-shop scheduling problem with assembly operations," International Journal of Production Research, Taylor & Francis Journals, vol. 59(23), pages 7216-7231, December.
    12. Biel, K. & Glock, C. H., 2016. "Systematic literature review of decision support models for energy-efficient production planning," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 83071, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Guang Feng & Hoong Lau, 2008. "Efficient algorithms for machine scheduling problems with earliness and tardiness penalties," Annals of Operations Research, Springer, vol. 159(1), pages 83-95, March.
    14. John J. Kanet & V. Sridharan, 2000. "Scheduling with Inserted Idle Time: Problem Taxonomy and Literature Review," Operations Research, INFORMS, vol. 48(1), pages 99-110, February.
    15. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    16. Kan Fang & Nelson A. Uhan & Fu Zhao & John W. Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    17. Kan Fang & Nelson Uhan & Fu Zhao & John Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    18. Andy Ham & Myoung-Ju Park & Kyung Min Kim, 2021. "Energy-Aware Flexible Job Shop Scheduling Using Mixed Integer Programming and Constraint Programming," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, June.
    19. Stéphane Dauzère-Pérès & Jan Paulli, 1997. "An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search," Annals of Operations Research, Springer, vol. 70(0), pages 281-306, April.
    20. Xu Zheng & Shengchao Zhou & Rui Xu & Huaping Chen, 2020. "Energy-efficient scheduling for multi-objective two-stage flow shop using a hybrid ant colony optimisation algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 58(13), pages 4103-4120, July.
    21. Shijin Wang & Zhanguo Zhu & Kan Fang & Feng Chu & Chengbin Chu, 2018. "Scheduling on a two-machine permutation flow shop under time-of-use electricity tariffs," International Journal of Production Research, Taylor & Francis Journals, vol. 56(9), pages 3173-3187, May.
    22. Minh Hung Ho & Faicel Hnaien & Frederic Dugardin, 2021. "Electricity cost minimisation for optimal makespan solution in flow shop scheduling under time-of-use tariffs," International Journal of Production Research, Taylor & Francis Journals, vol. 59(4), pages 1041-1067, February.
    23. Deming Lei & Youlian Zheng & Xiuping Guo, 2017. "A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3126-3140, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    2. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    3. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2021. "Job Scheduling under Time-of-Use Energy Tariffs for Sustainable Manufacturing: A Survey," LIDAM Discussion Papers CORE 2021019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. João M. R. C. Fernandes & Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2022. "Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
    5. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    6. Shen, Liji & Dauzère-Pérès, Stéphane & Neufeld, Janis S., 2018. "Solving the flexible job shop scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(2), pages 503-516.
    7. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
    8. Shun Jia & Yang Yang & Shuyu Li & Shang Wang & Anbang Li & Wei Cai & Yang Liu & Jian Hao & Luoke Hu, 2024. "The Green Flexible Job-Shop Scheduling Problem Considering Cost, Carbon Emissions, and Customer Satisfaction under Time-of-Use Electricity Pricing," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    9. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    10. Michal Penn & Tal Raviv, 2021. "Complexity and algorithms for min cost and max profit scheduling under time-of-use electricity tariffs," Journal of Scheduling, Springer, vol. 24(1), pages 83-102, February.
    11. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    12. Tamssaouet, Karim & Dauzère-Pérès, Stéphane, 2023. "A general efficient neighborhood structure framework for the job-shop and flexible job-shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 311(2), pages 455-471.
    13. Xiangxin An & Guojin Si & Tangbin Xia & Qinming Liu & Yaping Li & Rui Miao, 2022. "Operation and Maintenance Optimization for Manufacturing Systems with Energy Management," Energies, MDPI, vol. 15(19), pages 1-19, October.
    14. Liji Shen & Jatinder N. D. Gupta, 2018. "Family scheduling with batch availability in flow shops to minimize makespan," Journal of Scheduling, Springer, vol. 21(2), pages 235-249, April.
    15. Tian, Zheng & Zheng, Li, 2024. "Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and optimisation approaches," European Journal of Operational Research, Elsevier, vol. 312(2), pages 512-524.
    16. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    17. Peng Wu & Junheng Cheng & Feng Chu, 2021. "Large-scale energy-conscious bi-objective single-machine batch scheduling under time-of-use electricity tariffs via effective iterative heuristics," Annals of Operations Research, Springer, vol. 296(1), pages 471-494, January.
    18. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    19. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    20. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:310:y:2023:i:3:p:992-1016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.