IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v56y2018i9p3173-3187.html
   My bibliography  Save this article

Scheduling on a two-machine permutation flow shop under time-of-use electricity tariffs

Author

Listed:
  • Shijin Wang
  • Zhanguo Zhu
  • Kan Fang
  • Feng Chu
  • Chengbin Chu

Abstract

We consider a two-machine permutation flow shop scheduling problem to minimise the total electricity cost of processing jobs under time-of-use electricity tariffs. We formulate the problem as a mixed integer linear programming, then we design two heuristic algorithms based on Johnson’s rule and dynamic programming method, respectively. In particular, we show how to find an optimal schedule using dynamic programming when the processing sequence is fixed. In addition, we propose an iterated local search algorithm to solve the problem with problem-tailored procedures and move operators, and test the computational performance of these methods on randomly generated instances.

Suggested Citation

  • Shijin Wang & Zhanguo Zhu & Kan Fang & Feng Chu & Chengbin Chu, 2018. "Scheduling on a two-machine permutation flow shop under time-of-use electricity tariffs," International Journal of Production Research, Taylor & Francis Journals, vol. 56(9), pages 3173-3187, May.
  • Handle: RePEc:taf:tprsxx:v:56:y:2018:i:9:p:3173-3187
    DOI: 10.1080/00207543.2017.1401236
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1401236
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1401236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Wu & Junheng Cheng & Feng Chu, 2021. "Large-scale energy-conscious bi-objective single-machine batch scheduling under time-of-use electricity tariffs via effective iterative heuristics," Annals of Operations Research, Springer, vol. 296(1), pages 471-494, January.
    2. Xiangxin An & Guojin Si & Tangbin Xia & Qinming Liu & Yaping Li & Rui Miao, 2022. "Operation and Maintenance Optimization for Manufacturing Systems with Energy Management," Energies, MDPI, vol. 15(19), pages 1-19, October.
    3. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    4. Foumani, Mehdi & Smith-Miles, Kate, 2019. "The impact of various carbon reduction policies on green flowshop scheduling," Applied Energy, Elsevier, vol. 249(C), pages 300-315.
    5. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    6. Du, Yu & Li, Jun-qing, 2024. "A deep reinforcement learning based algorithm for a distributed precast concrete production scheduling," International Journal of Production Economics, Elsevier, vol. 268(C).
    7. An, Xiangxin & Si, Guojin & Xia, Tangbin & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2023. "An energy-efficient collaborative strategy of maintenance planning and production scheduling for serial-parallel systems under time-of-use tariffs," Applied Energy, Elsevier, vol. 336(C).
    8. Shun Jia & Yang Yang & Shuyu Li & Shang Wang & Anbang Li & Wei Cai & Yang Liu & Jian Hao & Luoke Hu, 2024. "The Green Flexible Job-Shop Scheduling Problem Considering Cost, Carbon Emissions, and Customer Satisfaction under Time-of-Use Electricity Pricing," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    9. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:56:y:2018:i:9:p:3173-3187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.