IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2443-d1357520.html
   My bibliography  Save this article

The Green Flexible Job-Shop Scheduling Problem Considering Cost, Carbon Emissions, and Customer Satisfaction under Time-of-Use Electricity Pricing

Author

Listed:
  • Shun Jia

    (Department of Industrial Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Yang Yang

    (Department of Industrial Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Shuyu Li

    (Department of Industrial Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Shang Wang

    (Department of Industrial Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Anbang Li

    (Engineering Training Center, Shandong University of Science and Technology, Qingdao 266590, China)

  • Wei Cai

    (College of Engineering and Technology, Southwest University, Chongqing 400715, China)

  • Yang Liu

    (Department of Industrial Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Jian Hao

    (Department of Industrial Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Luoke Hu

    (School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

Exploration of the green flexible job-shop scheduling problem is essential for enterprises aiming for sustainable practices, including energy conservation, emissions reduction, and enhanced economic and social benefits. While existing research has predominantly focused on carbon emissions or energy consumption as green scheduling objectives, this paper addresses the broader scope by incorporating the impact of variable energy prices on energy cost. Through the introduction of an energy cost model based on time-of-use electricity pricing, the study formulates a multi-objective optimization model for green flexible job-shop scheduling. The objectives include minimizing cost, reducing carbon emissions, and maximizing customer satisfaction. To prevent premature convergence and maintain population diversity, an enhanced genetic algorithm is employed for solving. The validation of the algorithm’s effectiveness is demonstrated through specific examples, providing decision results for optimal scheduling under various weight combinations. The research outcomes hold substantial practical value as they can significantly reduce energy expenses, lower carbon emissions, and elevate customer satisfaction while safeguarding production efficiency. This contributes to enhancing the market competitiveness and green brand image of businesses.

Suggested Citation

  • Shun Jia & Yang Yang & Shuyu Li & Shang Wang & Anbang Li & Wei Cai & Yang Liu & Jian Hao & Luoke Hu, 2024. "The Green Flexible Job-Shop Scheduling Problem Considering Cost, Carbon Emissions, and Customer Satisfaction under Time-of-Use Electricity Pricing," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2443-:d:1357520
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2443/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amjad Almusaed & Ibrahim Yitmen & Asaad Almssad, 2023. "Reviewing and Integrating AEC Practices into Industry 6.0: Strategies for Smart and Sustainable Future-Built Environments," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    2. Alper Türkyılmaz & Özlem Şenvar & İrem Ünal & Serol Bulkan, 2020. "A research survey: heuristic approaches for solving multi objective flexible job shop problems," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1949-1983, December.
    3. Muhammad Kamal Amjad & Shahid Ikramullah Butt & Rubeena Kousar & Riaz Ahmad & Mujtaba Hassan Agha & Zhang Faping & Naveed Anjum & Umer Asgher, 2018. "Recent Research Trends in Genetic Algorithm Based Flexible Job Shop Scheduling Problems," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-32, February.
    4. Sven Schulz & Udo Buscher & Liji Shen, 2020. "Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices," Journal of Business Economics, Springer, vol. 90(9), pages 1315-1343, November.
    5. Kan Fang & Nelson A. Uhan & Fu Zhao & John W. Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    6. Kan Fang & Nelson Uhan & Fu Zhao & John Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    7. Nicolás Álvarez-Gil & Rafael Rosillo & David de la Fuente & Raúl Pino, 2021. "A discrete firefly algorithm for solving the flexible job-shop scheduling problem in a make-to-order manufacturing system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1353-1374, December.
    8. Shijin Wang & Zhanguo Zhu & Kan Fang & Feng Chu & Chengbin Chu, 2018. "Scheduling on a two-machine permutation flow shop under time-of-use electricity tariffs," International Journal of Production Research, Taylor & Francis Journals, vol. 56(9), pages 3173-3187, May.
    9. Kfir Arviv & Helman Stern & Yael Edan, 2016. "Collaborative reinforcement learning for a two-robot job transfer flow-shop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1196-1209, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    2. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    3. Peng Wu & Junheng Cheng & Feng Chu, 2021. "Large-scale energy-conscious bi-objective single-machine batch scheduling under time-of-use electricity tariffs via effective iterative heuristics," Annals of Operations Research, Springer, vol. 296(1), pages 471-494, January.
    4. Xiangxin An & Guojin Si & Tangbin Xia & Qinming Liu & Yaping Li & Rui Miao, 2022. "Operation and Maintenance Optimization for Manufacturing Systems with Energy Management," Energies, MDPI, vol. 15(19), pages 1-19, October.
    5. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    6. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
    7. Gaggero, Mauro & Paolucci, Massimo & Ronco, Roberto, 2023. "Exact and heuristic solution approaches for energy-efficient identical parallel machine scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 311(3), pages 845-866.
    8. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.
    9. Michal Penn & Tal Raviv, 2021. "Complexity and algorithms for min cost and max profit scheduling under time-of-use electricity tariffs," Journal of Scheduling, Springer, vol. 24(1), pages 83-102, February.
    10. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    11. Jules Raymond Kala & Didier Michael Kre & Armelle N’Guessan Gnassou & Jean Robert Kamdjoug Kala & Yves Melaine Akpablin Akpablin & Tiorna Coulibaly, 2022. "Assets management on electrical grid using Faster-RCNN," Annals of Operations Research, Springer, vol. 308(1), pages 307-320, January.
    12. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    13. Wu, Xueqi & Che, Ada, 2020. "Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search," Omega, Elsevier, vol. 94(C).
    14. Hongliang Zhang & Yujuan Wu & Ruilin Pan & Gongjie Xu, 2021. "Two-stage parallel speed-scaling machine scheduling under time-of-use tariffs," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 91-112, January.
    15. Wu, Xueqi & Che, Ada, 2019. "A memetic differential evolution algorithm for energy-efficient parallel machine scheduling," Omega, Elsevier, vol. 82(C), pages 155-165.
    16. Tian, Zheng & Zheng, Li, 2024. "Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and optimisation approaches," European Journal of Operational Research, Elsevier, vol. 312(2), pages 512-524.
    17. Ruilin Pan & Qiong Wang & Zhenghong Li & Jianhua Cao & Yongjin Zhang, 2022. "Steelmaking-continuous casting scheduling problem with multi-position refining furnaces under time-of-use tariffs," Annals of Operations Research, Springer, vol. 310(1), pages 119-151, March.
    18. Aghelinejad, MohammadMohsen & Ouazene, Yassine & Yalaoui, Alice, 2019. "Complexity analysis of energy-efficient single machine scheduling problems," Operations Research Perspectives, Elsevier, vol. 6(C).
    19. Lin Chen & Nicole Megow & Roman Rischke & Leen Stougie & José Verschae, 2021. "Optimal algorithms for scheduling under time-of-use tariffs," Annals of Operations Research, Springer, vol. 304(1), pages 85-107, September.
    20. Uz Zaman, Qamar & Zhao, Yuhuan & Zaman, Shah & Batool, Kiran & Nasir, Rabiya, 2024. "Reviewing energy efficiency and environmental consciousness in the minerals industry Amidst digital transition: A comprehensive review," Resources Policy, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2443-:d:1357520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.