IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2216-d238798.html
   My bibliography  Save this article

Energy Saving Operation of Manufacturing System Based on Dynamic Adaptive Fuzzy Reasoning Petri Net

Author

Listed:
  • Junfeng Wang

    (Department of Industrial and Manufacturing System Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Zicheng Fei

    (Department of Industrial and Manufacturing System Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Qing Chang

    (Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904 USA)

  • Shiqi Li

    (Department of Industrial and Manufacturing System Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

The energy efficient operation of a manufacturing system is important for sustainable development of industry. Apart from the device and process level, energy saving methods at the system level has attracted increasing attention with the rapid growth of the industrial Internet of things technology, which makes it possible to sense and collect real-time data from the production line and provide more opportunities for online control for energy saving purposes. In this paper, a dynamic adaptive fuzzy reasoning Petri net is proposed to decide the machine energy saving state considering the production information of a discrete stochastic manufacturing system. Fuzzy knowledge for energy saving operations of a machine is represented in weighted fuzzy production rules with certain values. The rules describe uncertain, imprecise, and ambiguous knowledge of machine state decisions. This makes an energy saving sleep decision in advance when a machine has the inclination of starvation or blockage, which is based on the real-time production rates and level of connected buffers. A dynamic adaptive fuzzy reasoning Petri net is formally defined to implement the reasoning process of the machine state decision. A manufacturing system case is used to demonstrate the application of our method and the results indicate its effectiveness for energy saving operation purposes.

Suggested Citation

  • Junfeng Wang & Zicheng Fei & Qing Chang & Shiqi Li, 2019. "Energy Saving Operation of Manufacturing System Based on Dynamic Adaptive Fuzzy Reasoning Petri Net," Energies, MDPI, vol. 12(11), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2216-:d:238798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2216/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2216/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    2. Zou, Jing & Chang, Qing & Arinez, Jorge & Xiao, Guoxian, 2017. "Data-driven modeling and real-time distributed control for energy efficient manufacturing systems," Energy, Elsevier, vol. 127(C), pages 247-257.
    3. Azadegan, Arash & Porobic, Lejla & Ghazinoory, Sepehr & Samouei, Parvaneh & Saman Kheirkhah, Amir, 2011. "Fuzzy logic in manufacturing: A review of literature and a specialized application," International Journal of Production Economics, Elsevier, vol. 132(2), pages 258-270, August.
    4. Zhiyang Jia & Liang Zhang & Jorge Arinez & Guoxian Xiao, 2016. "Performance analysis for serial production lines with Bernoulli Machines and Real-time WIP-based Machine switch-on/off control," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6285-6301, November.
    5. Chen Peng & Tao Peng & Yi Zhang & Renzhong Tang & Luoke Hu, 2018. "Minimising Non-Processing Energy Consumption and Tardiness Fines in a Mixed-Flow Shop," Energies, MDPI, vol. 11(12), pages 1-15, December.
    6. Akvile Lawrence & Patrik Thollander & Mariana Andrei & Magnus Karlsson, 2019. "Specific Energy Consumption/Use (SEC) in Energy Management for Improving Energy Efficiency in Industry: Meaning, Usage and Differences," Energies, MDPI, vol. 12(2), pages 1-22, January.
    7. Li, Yufeng & He, Yan & Wang, Yan & Wang, Yulin & Yan, Ping & Lin, Shenlong, 2015. "A modeling method for hybrid energy behaviors in flexible machining systems," Energy, Elsevier, vol. 86(C), pages 164-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Salonitis, 2020. "Energy Efficiency of Manufacturing Processes and Systems—An Introduction," Energies, MDPI, vol. 13(11), pages 1-5, June.
    2. Xiangxin An & Guojin Si & Tangbin Xia & Qinming Liu & Yaping Li & Rui Miao, 2022. "Operation and Maintenance Optimization for Manufacturing Systems with Energy Management," Energies, MDPI, vol. 15(19), pages 1-19, October.
    3. Tangbin Xia & Xiangxin An & Huaqiang Yang & Yimin Jiang & Yuhui Xu & Meimei Zheng & Ershun Pan, 2023. "Efficient Energy Use in Manufacturing Systems—Modeling, Assessment, and Management Strategy," Energies, MDPI, vol. 16(3), pages 1-20, January.
    4. Helena Bulińska-Stangrecka & Anna Bagieńska, 2021. "Culture-Based Green Workplace Practices as a Means of Conserving Energy and Other Natural Resources in the Manufacturing Sector," Energies, MDPI, vol. 14(19), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junfeng Wang & Yaqin Huang & Qing Chang & Shiqi Li, 2019. "Event-Driven Online Machine State Decision for Energy-Efficient Manufacturing System Based on Digital Twin Using Max-Plus Algebra," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    2. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    3. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    4. Omri, Anis, 2014. "An international literature survey on energy-economic growth nexus: Evidence from country-specific studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 951-959.
    5. Shi-Xin Wang & Yao Yao & Yi Zhou, 2014. "Analysis of Ecological Quality of the Environment and Influencing Factors in China during 2005–2010," IJERPH, MDPI, vol. 11(2), pages 1-21, January.
    6. Younes Gholizadeh, 2020. "Causality Relationship between Energy Consumption and Economic Growth in the European Union Countries," EERI Research Paper Series EERI RP 2020/12, Economics and Econometrics Research Institute (EERI), Brussels.
    7. Wang, Jianda & Yang, Senmiao & Dong, Kangyin & Nepal, Rabindra, 2024. "Assessing embodied carbon emission and its drivers in China's ICT sector: Multi-regional input-output and structural decomposition analysis," Energy Policy, Elsevier, vol. 186(C).
    8. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
    9. Halkos, George E. & Tzeremes, Nickolaos G., 2011. "Oil consumption and economic efficiency: A comparative analysis of advanced, developing and emerging economies," Ecological Economics, Elsevier, vol. 70(7), pages 1354-1362, May.
    10. Hayat Khan & Liu Weili & Itbar Khan, 2022. "Environmental innovation, trade openness and quality institutions: an integrated investigation about environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3832-3862, March.
    11. Ruixiaoxiao Zhang & Geoffrey QP Shen & Meng Ni & Johnny Wong, 2020. "The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy," Energy & Environment, , vol. 31(2), pages 215-236, March.
    12. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    13. Ghosh, Sajal, 2010. "Examining carbon emissions economic growth nexus for India: A multivariate cointegration approach," Energy Policy, Elsevier, vol. 38(6), pages 3008-3014, June.
    14. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.
    15. Wang, Zhibao & Zhao, Nana & Wei, Wendong & Zhang, Qianwen, 2021. "A differentiated energy Kuznets curve: Evidence from mainland China," Energy, Elsevier, vol. 214(C).
    16. Marques, António Cardoso & Fuinhas, José Alberto & Neves, Sónia Almeida, 2018. "Ordinary and Special Regimes of electricity generation in Spain: How they interact with economic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1226-1240.
    17. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    18. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    19. Karimkashi, Shervin & Amidpour, Majid, 2012. "Total site energy improvement using R-curve concept," Energy, Elsevier, vol. 40(1), pages 329-340.
    20. Fernando, Yudi & Hor, Wei Lin, 2017. "Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 62-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2216-:d:238798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.