IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v302y2022i1p363-380.html
   My bibliography  Save this article

Approximate dynamic programming for an energy-efficient parallel machine scheduling problem

Author

Listed:
  • Heydar, Mojtaba
  • Mardaneh, Elham
  • Loxton, Ryan

Abstract

In this paper, we propose an approximate dynamic programming approach for an energy-efficient unrelated parallel machine scheduling problem. In this scheduling problem, jobs arrive at the system randomly, and each job’s ready and processing times become available when an order is placed. Therefore, we consider the online version of the problem. Our objective is to minimize a combination of makespan and the total energy costs. The energy costs include cost of energy consumption of machines for switching on, processing, and idleness. We propose a binary program to solve the optimization problem at each stage of the approximate dynamic program. We compare the results of the approximate programming approach against an integer linear programming formulation of the offline version of the scheduling problem and an existing heuristic method suitable for scheduling problem with ready times. The results show that the approximate dynamic programming algorithm outperforms the two off-line methods in terms of solution quality and computational time.

Suggested Citation

  • Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
  • Handle: RePEc:eee:ejores:v:302:y:2022:i:1:p:363-380
    DOI: 10.1016/j.ejor.2021.12.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721010973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.12.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. En-da Jiang & Ling Wang, 2019. "An improved multi-objective evolutionary algorithm based on decomposition for energy-efficient permutation flow shop scheduling problem with sequence-dependent setup time," International Journal of Production Research, Taylor & Francis Journals, vol. 57(6), pages 1756-1771, March.
    2. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
    3. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    4. MohammadMohsen Aghelinejad & Yassine Ouazene & Alice Yalaoui, 2018. "Production scheduling optimisation with machine state and time-dependent energy costs," International Journal of Production Research, Taylor & Francis Journals, vol. 56(16), pages 5558-5575, August.
    5. Liu, Ming & Yang, Xuenan & Chu, Feng & Zhang, Jiantong & Chu, Chengbin, 2020. "Energy-oriented bi-objective optimization for the tempered glass scheduling," Omega, Elsevier, vol. 90(C).
    6. Minghui Zhang & Yan Lan & Xin Han, 2020. "Approximation algorithms for two-stage flexible flow shop scheduling," Journal of Combinatorial Optimization, Springer, vol. 39(1), pages 1-14, January.
    7. Gökan May & Bojan Stahl & Marco Taisch & Vittal Prabhu, 2015. "Multi-objective genetic algorithm for energy-efficient job shop scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 7071-7089, December.
    8. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, I: Single Period Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 21-39, February.
    9. Shijin Wang & Xiaodong Wang & Feng Chu & Jianbo Yu, 2020. "An energy-efficient two-stage hybrid flow shop scheduling problem in a glass production," International Journal of Production Research, Taylor & Francis Journals, vol. 58(8), pages 2283-2314, April.
    10. Guohua Wan & Xiangtong Qi, 2010. "Scheduling with variable time slot costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(2), pages 159-171, March.
    11. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    12. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    13. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    14. Jenkins, Phillip R. & Robbins, Matthew J. & Lunday, Brian J., 2021. "Approximate dynamic programming for the military aeromedical evacuation dispatching, preemption-rerouting, and redeployment problem," European Journal of Operational Research, Elsevier, vol. 290(1), pages 132-143.
    15. Kan Fang & Nelson A. Uhan & Fu Zhao & John W. Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    16. Al-Kanj, Lina & Nascimento, Juliana & Powell, Warren B., 2020. "Approximate dynamic programming for planning a ride-hailing system using autonomous fleets of electric vehicles," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1088-1106.
    17. Liu, Ying & Dong, Haibo & Lohse, Niels & Petrovic, Sanja, 2016. "A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance," International Journal of Production Economics, Elsevier, vol. 179(C), pages 259-272.
    18. Kan Fang & Nelson Uhan & Fu Zhao & John Sutherland, 2016. "Scheduling on a single machine under time-of-use electricity tariffs," Annals of Operations Research, Springer, vol. 238(1), pages 199-227, March.
    19. Xu Zheng & Shengchao Zhou & Rui Xu & Huaping Chen, 2020. "Energy-efficient scheduling for multi-objective two-stage flow shop using a hybrid ant colony optimisation algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 58(13), pages 4103-4120, July.
    20. Mansouri, S. Afshin & Aktas, Emel & Besikci, Umut, 2016. "Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption," European Journal of Operational Research, Elsevier, vol. 248(3), pages 772-788.
    21. Yuan, Yuan & Tang, Lixin, 2017. "Novel time-space network flow formulation and approximate dynamic programming approach for the crane scheduling in a coil warehouse," European Journal of Operational Research, Elsevier, vol. 262(2), pages 424-437.
    22. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    23. Warren B. Powell, 2016. "Perspectives of approximate dynamic programming," Annals of Operations Research, Springer, vol. 241(1), pages 319-356, June.
    24. Martijn R. K. Mes & Arturo Pérez Rivera, 2017. "Approximate Dynamic Programming by Practical Examples," International Series in Operations Research & Management Science, in: Richard J. Boucherie & Nico M. van Dijk (ed.), Markov Decision Processes in Practice, chapter 0, pages 63-101, Springer.
    25. S Afshin Mansouri & Emel Aktas, 2016. "Minimizing energy consumption and makespan in a two-machine flowshop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1382-1394, November.
    26. Peter J. H. Hulshof & Martijn R. K. Mes & Richard J. Boucherie & Erwin W. Hans, 2016. "Patient admission planning using Approximate Dynamic Programming," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 30-61, June.
    27. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, II: Multiperiod Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 40-54, February.
    28. Deming Lei & Youlian Zheng & Xiuping Guo, 2017. "A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3126-3140, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cervellera, Cristiano, 2023. "Optimized ensemble value function approximation for dynamic programming," European Journal of Operational Research, Elsevier, vol. 309(2), pages 719-730.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    2. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    3. Rempel, M. & Cai, J., 2021. "A review of approximate dynamic programming applications within military operations research," Operations Research Perspectives, Elsevier, vol. 8(C).
    4. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    5. Matthias Gerhard Wichmann & Christoph Johannes & Thomas Stefan Spengler, 2019. "An extension of the general lot-sizing and scheduling problem (GLSP) with time-dependent energy prices," Journal of Business Economics, Springer, vol. 89(5), pages 481-514, July.
    6. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2021. "Job Scheduling under Time-of-Use Energy Tariffs for Sustainable Manufacturing: A Survey," LIDAM Discussion Papers CORE 2021019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
    8. Michal Penn & Tal Raviv, 2021. "Complexity and algorithms for min cost and max profit scheduling under time-of-use electricity tariffs," Journal of Scheduling, Springer, vol. 24(1), pages 83-102, February.
    9. Xiangxin An & Guojin Si & Tangbin Xia & Qinming Liu & Yaping Li & Rui Miao, 2022. "Operation and Maintenance Optimization for Manufacturing Systems with Energy Management," Energies, MDPI, vol. 15(19), pages 1-19, October.
    10. Alvarez-Meaza, Izaskun & Zarrabeitia-Bilbao, Enara & Rio-Belver, Rosa-María & Garechana-Anacabe, Gaizka, 2021. "Green scheduling to achieve green manufacturing: Pursuing a research agenda by mapping science," Technology in Society, Elsevier, vol. 67(C).
    11. Tian, Zheng & Zheng, Li, 2024. "Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and optimisation approaches," European Journal of Operational Research, Elsevier, vol. 312(2), pages 512-524.
    12. Andrzej Bożek, 2020. "Energy Cost-Efficient Task Positioning in Manufacturing Systems," Energies, MDPI, vol. 13(19), pages 1-21, September.
    13. Zhou, Shengchao & Jin, Mingzhou & Du, Ni, 2020. "Energy-efficient scheduling of a single batch processing machine with dynamic job arrival times," Energy, Elsevier, vol. 209(C).
    14. Anghinolfi, Davide & Paolucci, Massimo & Ronco, Roberto, 2021. "A bi-objective heuristic approach for green identical parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 289(2), pages 416-434.
    15. João M. R. C. Fernandes & Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2022. "Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
    16. Trevino-Martinez, Samuel & Sawhney, Rapinder & Shylo, Oleg, 2022. "Energy-carbon footprint optimization in sequence-dependent production scheduling," Applied Energy, Elsevier, vol. 315(C).
    17. Deming Lei & Youlian Zheng & Xiuping Guo, 2017. "A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3126-3140, June.
    18. Park, Myoung-Ju & Ham, Andy, 2022. "Energy-aware flexible job shop scheduling under time-of-use pricing," International Journal of Production Economics, Elsevier, vol. 248(C).
    19. Masmoudi, Oussama & Delorme, Xavier & Gianessi, Paolo, 2019. "Job-shop scheduling problem with energy consideration," International Journal of Production Economics, Elsevier, vol. 216(C), pages 12-22.
    20. Yan, Pengyu & Yu, Kaize & Chao, Xiuli & Chen, Zhibin, 2023. "An online reinforcement learning approach to charging and order-dispatching optimization for an e-hailing electric vehicle fleet," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1218-1233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:302:y:2022:i:1:p:363-380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.