IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7231-d931369.html
   My bibliography  Save this article

Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends

Author

Listed:
  • Dongsu Kim

    (Department of Architectural Engineering, Hanbat National University, Daejeon 34158, Korea)

  • Jongman Lee

    (Department of Architecture, College of Engineering, Korea University, Seoul 02841, Korea)

  • Sunglok Do

    (Department of Building and Plant Engineering, Hanbat National University, Daejeon 34158, Korea)

  • Pedro J. Mago

    (Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA)

  • Kwang Ho Lee

    (Department of Architecture, College of Engineering, Korea University, Seoul 02841, Korea)

  • Heejin Cho

    (Department of Mechanical Engineering, Mississippi State University, Starkville, MS 39759, USA)

Abstract

Buildings use up to 40% of the global primary energy and 30% of global greenhouse gas emissions, which may significantly impact climate change. Heating, ventilation, and air-conditioning (HVAC) systems are among the most significant contributors to global primary energy consumption and carbon gas emissions. Furthermore, HVAC energy demand is expected to rise in the future. Therefore, advancements in HVAC systems’ performance and design would be critical for mitigating worldwide energy and environmental concerns. To make such advancements, energy modeling and model predictive control (MPC) play an imperative role in designing and operating HVAC systems effectively. Building energy simulations and analysis techniques effectively implement HVAC control schemes in the building system design and operation phases, and thus provide quantitative insights into the behaviors of the HVAC energy flow for architects and engineers. Extensive research and advanced HVAC modeling/control techniques have emerged to provide better solutions in response to the issues. This study reviews building energy modeling techniques and state-of-the-art updates of MPC in HVAC applications based on the most recent research articles (e.g., from MDPI’s and Elsevier’s databases). For the review process, the investigation of relevant keywords and context-based collected data is first carried out to overview their frequency and distribution comprehensively. Then, this review study narrows the topic selection and search scopes to focus on relevant research papers and extract relevant information and outcomes. Finally, a systematic review approach is adopted based on the collected review and research papers to overview the advancements in building system modeling and MPC technologies. This study reveals that advanced building energy modeling is crucial in implementing the MPC-based control and operation design to reduce building energy consumption and cost. This paper presents the details of major modeling techniques, including white-box, grey-box, and black-box modeling approaches. This paper also provides future insights into the advanced HVAC control and operation design for researchers in relevant research and practical fields.

Suggested Citation

  • Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7231-:d:931369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tostado-Véliz, Marcos & León-Japa, Rogelio S. & Jurado, Francisco, 2021. "Optimal electrification of off-grid smart homes considering flexible demand and vehicle-to-home capabilities," Applied Energy, Elsevier, vol. 298(C).
    2. Younghoon Kwak & Jeonga Kang & Sun-Hye Mun & Young-Sun Jeong & Jung-Ho Huh, 2020. "Development and Application of a Flexible Modeling Approach to Reference Buildings for Energy Analysis," Energies, MDPI, vol. 13(21), pages 1-22, November.
    3. Nikolaos Kampelis & Nikolaos Sifakis & Dionysia Kolokotsa & Konstantinos Gobakis & Konstantinos Kalaitzakis & Daniela Isidori & Cristina Cristalli, 2019. "HVAC Optimization Genetic Algorithm for Industrial Near-Zero-Energy Building Demand Response," Energies, MDPI, vol. 12(11), pages 1-23, June.
    4. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2020. "A framework for uncertainty quantification in building heat demand simulations using reduced-order grey-box energy models," Applied Energy, Elsevier, vol. 275(C).
    5. Elsa Chaerun Nisa & Yean-Der Kuan & Chin-Chang Lai, 2021. "Chiller Optimization Using Data Mining Based on Prediction Model, Clustering and Association Rule Mining," Energies, MDPI, vol. 14(20), pages 1-14, October.
    6. Antonio Rosato & Francesco Guarino & Vincenzo Filomena & Sergio Sibilio & Luigi Maffei, 2020. "Experimental Calibration and Validation of a Simulation Model for Fault Detection of HVAC Systems and Application to a Case Study," Energies, MDPI, vol. 13(15), pages 1-27, August.
    7. Png, Ethan & Srinivasan, Seshadhri & Bekiroglu, Korkut & Chaoyang, Jiang & Su, Rong & Poolla, Kameshwar, 2019. "An internet of things upgrade for smart and scalable heating, ventilation and air-conditioning control in commercial buildings," Applied Energy, Elsevier, vol. 239(C), pages 408-424.
    8. Jean Pierre Campana & Gian Luca Morini, 2019. "BESTEST and EN ISO 52016 Benchmarking of ALMABuild, a New Open-Source Simulink Tool for Dynamic Energy Modelling of Buildings," Energies, MDPI, vol. 12(15), pages 1-20, July.
    9. Cerezo Davila, Carlos & Reinhart, Christoph F. & Bemis, Jamie L., 2016. "Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets," Energy, Elsevier, vol. 117(P1), pages 237-250.
    10. Anna Laura Pisello & Michael Bobker & Franco Cotana, 2012. "A Building Energy Efficiency Optimization Method by Evaluating the Effective Thermal Zones Occupancy," Energies, MDPI, vol. 5(12), pages 1-22, December.
    11. Wu, Wei & Skye, Harrison M. & Domanski, Piotr A., 2018. "Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings," Applied Energy, Elsevier, vol. 212(C), pages 577-591.
    12. Yaser Imad Alamin & María Del Mar Castilla & José Domingo Álvarez & Antonio Ruano, 2017. "An Economic Model-Based Predictive Control to Manage the Users’ Thermal Comfort in a Building," Energies, MDPI, vol. 10(3), pages 1-18, March.
    13. Hu, Yuqing & Cheng, Xiaoyuan & Wang, Suhang & Chen, Jianli & Zhao, Tianxiang & Dai, Enyan, 2022. "Times series forecasting for urban building energy consumption based on graph convolutional network," Applied Energy, Elsevier, vol. 307(C).
    14. Sha, Huajing & Xu, Peng & Yang, Zhiwei & Chen, Yongbao & Tang, Jixu, 2019. "Overview of computational intelligence for building energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 76-90.
    15. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    16. Rasa Džiugaitė-Tumėnienė & Rūta Mikučionienė & Giedrė Streckienė & Juozas Bielskus, 2021. "Development and Analysis of a Dynamic Energy Model of an Office Using a Building Management System (BMS) and Actual Measurement Data," Energies, MDPI, vol. 14(19), pages 1-24, October.
    17. Kang, Won Hee & Lee, Jong Man & Yeon, Sang Hun & Park, Min Kyeong & Kim, Chul Ho & Lee, Je Hyeon & Moon, Jin Woo & Lee, Kwang Ho, 2020. "Modeling, calibration, and sensitivity analysis of direct expansion AHU-Water source VRF system," Energy, Elsevier, vol. 199(C).
    18. Lee, Da Young & Seo, Byeong Mo & Hong, Sung Hyup & Choi, Jong Min & Lee, Kwang Ho, 2019. "Part load ratio characteristics and energy saving performance of standing column well geothermal heat pump system assisted with storage tank in an apartment," Energy, Elsevier, vol. 174(C), pages 1060-1078.
    19. Nikolaos Kampelis & Georgios I. Papayiannis & Dionysia Kolokotsa & Georgios N. Galanis & Daniela Isidori & Cristina Cristalli & Athanasios N. Yannacopoulos, 2020. "An Integrated Energy Simulation Model for Buildings," Energies, MDPI, vol. 13(5), pages 1-23, March.
    20. Joe, Jaewan & Karava, Panagiota, 2019. "A model predictive control strategy to optimize the performance of radiant floor heating and cooling systems in office buildings," Applied Energy, Elsevier, vol. 245(C), pages 65-77.
    21. Wang, Zhe & Hong, Tianzhen, 2020. "Reinforcement learning for building controls: The opportunities and challenges," Applied Energy, Elsevier, vol. 269(C).
    22. Zhang, Dongliang & Cai, Ning & Cui, Xiaobo & Xia, Xueying & Shi, Jianzhong & Huang, Xiaoqing, 2019. "Experimental investigation on model predictive control of radiant floor cooling combined with underfloor ventilation system," Energy, Elsevier, vol. 176(C), pages 23-33.
    23. Keshtkar, Azim & Arzanpour, Siamak, 2017. "An adaptive fuzzy logic system for residential energy management in smart grid environments," Applied Energy, Elsevier, vol. 186(P1), pages 68-81.
    24. Pouria Bahramnia & Seyyed Mohammad Hosseini Rostami & Jin Wang & Gwang-jun Kim, 2019. "Modeling and Controlling of Temperature and Humidity in Building Heating, Ventilating, and Air Conditioning System Using Model Predictive Control," Energies, MDPI, vol. 12(24), pages 1-24, December.
    25. Huyen Do & Kristen S. Cetin, 2019. "Data-Driven Evaluation of Residential HVAC System Efficiency Using Energy and Environmental Data," Energies, MDPI, vol. 12(1), pages 1-15, January.
    26. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2021. "Feature assessment frameworks to evaluate reduced-order grey-box building energy models," Applied Energy, Elsevier, vol. 298(C).
    27. Raman, Naren Srivaths & Devaprasad, Karthikeya & Chen, Bo & Ingley, Herbert A. & Barooah, Prabir, 2020. "Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations," Applied Energy, Elsevier, vol. 279(C).
    28. Pedro Macieira & Luis Gomes & Zita Vale, 2021. "Energy Management Model for HVAC Control Supported by Reinforcement Learning," Energies, MDPI, vol. 14(24), pages 1-14, December.
    29. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    30. Homod, Raad Z., 2018. "Analysis and optimization of HVAC control systems based on energy and performance considerations for smart buildings," Renewable Energy, Elsevier, vol. 126(C), pages 49-64.
    31. Simplice Igor Noubissie Tientcheu & Shyama P. Chowdhury & Thomas O. Olwal, 2019. "Intelligent Energy Management Strategy for Automated Office Buildings," Energies, MDPI, vol. 12(22), pages 1-27, November.
    32. Hyung Jun An & Jong Ho Yoon & Young Sub An & Eunnyeong Heo, 2018. "Heating and Cooling Performance of Office Buildings with a-Si BIPV Windows Considering Operating Conditions in Temperate Climates: The Case of Korea," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    33. Sarwar, Riasat & Cho, Heejin & Cox, Sam J. & Mago, Pedro J. & Luck, Rogelio, 2017. "Field validation study of a time and temperature indexed autoregressive with exogenous (ARX) model for building thermal load prediction," Energy, Elsevier, vol. 119(C), pages 483-496.
    34. Weeratunge, Hansani & Narsilio, Guillermo & de Hoog, Julian & Dunstall, Simon & Halgamuge, Saman, 2018. "Model predictive control for a solar assisted ground source heat pump system," Energy, Elsevier, vol. 152(C), pages 974-984.
    35. Marek Borowski & Klaudia Zwolińska, 2020. "Prediction of Cooling Energy Consumption in Hotel Building Using Machine Learning Techniques," Energies, MDPI, vol. 13(23), pages 1-19, November.
    36. Dirks, James A. & Gorrissen, Willy J. & Hathaway, John H. & Skorski, Daniel C. & Scott, Michael J. & Pulsipher, Trenton C. & Huang, Maoyi & Liu, Ying & Rice, Jennie S., 2015. "Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach," Energy, Elsevier, vol. 79(C), pages 20-32.
    37. Jin Dong & Christopher Winstead & James Nutaro & Teja Kuruganti, 2018. "Occupancy-Based HVAC Control with Short-Term Occupancy Prediction Algorithms for Energy-Efficient Buildings," Energies, MDPI, vol. 11(9), pages 1-20, September.
    38. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    39. Chen, Yixing & Hong, Tianzhen & Piette, Mary Ann, 2017. "Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis," Applied Energy, Elsevier, vol. 205(C), pages 323-335.
    40. Ji, Ying & Xu, Peng & Duan, Pengfei & Lu, Xing, 2016. "Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data," Applied Energy, Elsevier, vol. 169(C), pages 309-323.
    41. Dongsu Kim & Yeobeom Yoon & Jongman Lee & Pedro J. Mago & Kwangho Lee & Heejin Cho, 2022. "Design and Implementation of Smart Buildings: A Review of Current Research Trend," Energies, MDPI, vol. 15(12), pages 1-17, June.
    42. Alimohammadisagvand, Behrang & Jokisalo, Juha & Sirén, Kai, 2018. "Comparison of four rule-based demand response control algorithms in an electrically and heat pump-heated residential building," Applied Energy, Elsevier, vol. 209(C), pages 167-179.
    43. Giulia Lamberti & Giacomo Salvadori & Francesco Leccese & Fabio Fantozzi & Philomena M. Bluyssen, 2021. "Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    44. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    45. Mohamed Toub & Chethan R. Reddy & Rush D. Robinett & Mahdi Shahbakhti, 2021. "Integration and Optimal Control of MicroCSP with Building HVAC Systems: Review and Future Directions," Energies, MDPI, vol. 14(3), pages 1-41, January.
    46. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    47. Karam M. Al-Obaidi & Mohataz Hossain & Nayef A. M. Alduais & Husam S. Al-Duais & Hossein Omrany & Amirhosein Ghaffarianhoseini, 2022. "A Review of Using IoT for Energy Efficient Buildings and Cities: A Built Environment Perspective," Energies, MDPI, vol. 15(16), pages 1-32, August.
    48. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Purcell, Karl & Hoare, Cathal & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making," Applied Energy, Elsevier, vol. 279(C).
    49. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    50. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 204(C), pages 1333-1346.
    51. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
    52. Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Data-driven framework towards realistic bottom-up energy benchmarking using an Artificial Neural Network," Applied Energy, Elsevier, vol. 306(PA).
    53. Bampoulas, Adamantios & Saffari, Mohammad & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2021. "A fundamental unified framework to quantify and characterise energy flexibility of residential buildings with multiple electrical and thermal energy systems," Applied Energy, Elsevier, vol. 282(PA).
    54. Anand Krishnan Prakash & Susu Xu & Ram Rajagopal & Hae Young Noh, 2018. "Robust Building Energy Load Forecasting Using Physically-Based Kernel Models," Energies, MDPI, vol. 11(4), pages 1-21, April.
    55. Muhammad Waseem Ahmad & Anthony Mouraud & Yacine Rezgui & Monjur Mourshed, 2018. "Deep Highway Networks and Tree-Based Ensemble for Predicting Short-Term Building Energy Consumption," Energies, MDPI, vol. 11(12), pages 1-21, December.
    56. Neves, Rebecca & Cho, Heejin & Zhang, Jian, 2021. "State of the nation: Customizing energy and finances for geothermal technology in the United States residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Aleksander Skała & Jakub Grela & Dominik Latoń & Katarzyna Bańczyk & Michał Markiewicz & Andrzej Ożadowicz, 2023. "Implementation of Building a Thermal Model to Improve Energy Efficiency of the Central Heating System—A Case Study," Energies, MDPI, vol. 16(19), pages 1-27, September.
    3. Hyang-A Park & Gilsung Byeon & Wanbin Son & Jongyul Kim & Sungshin Kim, 2023. "Data-Driven Modeling of HVAC Systems for Operation of Virtual Power Plants Using a Digital Twin," Energies, MDPI, vol. 16(20), pages 1-14, October.
    4. Stefano Converso & Paolo Civiero & Stefano Ciprigno & Ivana Veselinova & Saffa Riffat, 2023. "Toward a Fast but Reliable Energy Performance Evaluation Method for Existing Residential Building Stock," Energies, MDPI, vol. 16(9), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Dafang & Watari, Daichi & Ozawa, Yuki & Taniguchi, Ittetsu & Suzuki, Toshihiro & Shimoda, Yoshiyuki & Onoye, Takao, 2023. "Data-driven online energy management framework for HVAC systems: An experimental study," Applied Energy, Elsevier, vol. 352(C).
    2. Zhang, Xiang & Saelens, Dirk & Roels, Staf, 2022. "Estimating dynamic solar gains from on-site measured data: An ARX modelling approach," Applied Energy, Elsevier, vol. 321(C).
    3. Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
    4. Raman, Naren Srivaths & Chen, Bo & Barooah, Prabir, 2022. "On energy-efficient HVAC operation with Model Predictive Control: A multiple climate zone study," Applied Energy, Elsevier, vol. 324(C).
    5. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    6. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    8. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Purcell, Karl & Hoare, Cathal & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making," Applied Energy, Elsevier, vol. 279(C).
    9. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    10. Giovanni Bianco & Stefano Bracco & Federico Delfino & Lorenzo Gambelli & Michela Robba & Mansueto Rossi, 2020. "A Building Energy Management System Based on an Equivalent Electric Circuit Model," Energies, MDPI, vol. 13(7), pages 1-23, April.
    11. Wenliang Li, 2020. "Quantifying the Building Energy Dynamics of Manhattan, New York City, Using an Urban Building Energy Model and Localized Weather Data," Energies, MDPI, vol. 13(12), pages 1-22, June.
    12. Raman, Naren Srivaths & Devaprasad, Karthikeya & Chen, Bo & Ingley, Herbert A. & Barooah, Prabir, 2020. "Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations," Applied Energy, Elsevier, vol. 279(C).
    13. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
    14. Wang, Xiaoyu & Tian, Shuai & Ren, Jiawen & Jin, Xing & Zhou, Xin & Shi, Xing, 2024. "A novel resistance-capacitance model for evaluating urban building energy loads considering construction boundary heterogeneity," Applied Energy, Elsevier, vol. 361(C).
    15. Chen, Xiao & Cao, Benyi & Pouramini, Somayeh, 2023. "Energy cost and consumption reduction of an office building by Chaotic Satin Bowerbird Optimization Algorithm with model predictive control and artificial neural network: A case study," Energy, Elsevier, vol. 270(C).
    16. V. S. K. V. Harish & Arun Kumar & Tabish Alam & Paolo Blecich, 2021. "Assessment of State-Space Building Energy System Models in Terms of Stability and Controllability," Sustainability, MDPI, vol. 13(21), pages 1-26, October.
    17. Joe, Jaewan & Im, Piljae & Cui, Borui & Dong, Jin, 2023. "Model-based predictive control of multi-zone commercial building with a lumped building modelling approach," Energy, Elsevier, vol. 263(PA).
    18. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    19. Joanna Piotrowska-Woroniak & Krzysztof Cieśliński & Grzegorz Woroniak & Jonas Bielskus, 2022. "The Impact of Thermo-Modernization and Forecast Regulation on the Reduction of Thermal Energy Consumption and Reduction of Pollutant Emissions into the Atmosphere on the Example of Prefabricated Build," Energies, MDPI, vol. 15(8), pages 1-32, April.
    20. Hanaa Talei & Driss Benhaddou & Carlos Gamarra & Houda Benbrahim & Mohamed Essaaidi, 2021. "Smart Building Energy Inefficiencies Detection through Time Series Analysis and Unsupervised Machine Learning," Energies, MDPI, vol. 14(19), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7231-:d:931369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.