IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i1p188-d195732.html
   My bibliography  Save this article

Data-Driven Evaluation of Residential HVAC System Efficiency Using Energy and Environmental Data

Author

Listed:
  • Huyen Do

    (Department of Civil Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, USA
    Faculty of Project Management, The University of Danang-University of Science and Technology, Danang 50000, Vietnam)

  • Kristen S. Cetin

    (Department of Civil Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, USA)

Abstract

In the U.S., the heating, ventilation, and air conditioning (HVAC) system is generally the largest electricity-consuming end-use in a residential building. However, homeowners are less likely to have their HVAC system serviced regularly, thus inefficiencies in operation are also more likely to occur. To address this challenge, this research works towards a non-intrusive data-driven assessment method using building assessors’ data, HVAC electricity demand data, and outdoor environmental data. Building assessors’ data is first used to estimate the HVAC system size, then estimate the electricity demand curve of the HVAC system. A comparison of the proposed electricity demand curve development method demonstrates strong agreement with physics-based HVAC model results. An HVAC efficiency rating is then proposed, which compares the model-predicted and actual performance data to define whether an HVAC system is operating as expected. As a case study, detailed data for 39 occupied, conditioned residential buildings in Austin, Texas, was used demonstrating the identification of the presence of potential HVAC inefficiencies. The results prove beneficial for utilities to help target residential HVAC systems in need of service or energy efficiency upgrades, as well as for homeowners as a continuous assessment tool for HVAC performance.

Suggested Citation

  • Huyen Do & Kristen S. Cetin, 2019. "Data-Driven Evaluation of Residential HVAC System Efficiency Using Energy and Environmental Data," Energies, MDPI, vol. 12(1), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:188-:d:195732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cesare Biserni & Paolo Valdiserri & Dario D’Orazio & Massimo Garai, 2018. "Energy Retrofitting Strategies and Economic Assessments: The Case Study of a Residential Complex Using Utility Bills," Energies, MDPI, vol. 11(8), pages 1-15, August.
    2. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Luling & Nock, Destenie & Cong, Shuchen & Qiu, Yueming (Lucy), 2023. "Inequalities across cooling and heating in households: Energy equity gaps," Energy Policy, Elsevier, vol. 182(C).
    2. Abdulrahman Alanezi & Kevin P. Hallinan & Kefan Huang, 2021. "Automated Residential Energy Audits Using a Smart WiFi Thermostat-Enabled Data Mining Approach," Energies, MDPI, vol. 14(9), pages 1-23, April.
    3. Hanaa Talei & Driss Benhaddou & Carlos Gamarra & Houda Benbrahim & Mohamed Essaaidi, 2021. "Smart Building Energy Inefficiencies Detection through Time Series Analysis and Unsupervised Machine Learning," Energies, MDPI, vol. 14(19), pages 1-21, September.
    4. Serafín Alonso & Antonio Morán & Miguel Ángel Prada & Perfecto Reguera & Juan José Fuertes & Manuel Domínguez, 2019. "A Data-Driven Approach for Enhancing the Efficiency in Chiller Plants: A Hospital Case Study," Energies, MDPI, vol. 12(5), pages 1-28, March.
    5. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    2. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    3. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    4. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    5. John Curtis & Brian Stanley, 2016. "Analysing Residential Energy Demand: An Error Correction Demand System Approach for Ireland," The Economic and Social Review, Economic and Social Studies, vol. 47(2), pages 185-211.
    6. Omar Shafqat & Elena Malakhatka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    7. Wei Yu & Baizhan Li & Yarong Lei & Meng Liu, 2011. "Analysis of a Residential Building Energy Consumption Demand Model," Energies, MDPI, vol. 4(3), pages 1-13, March.
    8. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    9. Anna Kipping & Erik Trømborg, 2017. "Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock," Energies, MDPI, vol. 11(1), pages 1-20, December.
    10. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    11. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    12. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    13. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    15. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
    16. Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
    17. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    18. Muratori, Matteo & Roberts, Matthew C. & Sioshansi, Ramteen & Marano, Vincenzo & Rizzoni, Giorgio, 2013. "A highly resolved modeling technique to simulate residential power demand," Applied Energy, Elsevier, vol. 107(C), pages 465-473.
    19. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2015. "Long term outlook of primary energy consumption of the Italian thermoelectric sector: Impact of fuel and carbon prices," Energy, Elsevier, vol. 87(C), pages 153-164.
    20. Xavier Faure & Tim Johansson & Oleksii Pasichnyi, 2022. "The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale," Energies, MDPI, vol. 15(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:188-:d:195732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.