IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp408-424.html
   My bibliography  Save this article

An internet of things upgrade for smart and scalable heating, ventilation and air-conditioning control in commercial buildings

Author

Listed:
  • Png, Ethan
  • Srinivasan, Seshadhri
  • Bekiroglu, Korkut
  • Chaoyang, Jiang
  • Su, Rong
  • Poolla, Kameshwar

Abstract

Scalability of control algorithms used for savings energy in commercial building Heating, Ventilation and Air-Conditioning (HVAC) system and their implementation on low cost resource constrained hardware is a challenging problem. This paper presents the Internet of Things (IoT) prototype which implements a smart and scalable control approach called the Smart-Token Based Scheduling Algorithm (Smart-TBSA) to minimize energy in commercial building HVAC systems. The IoT prototype is formalized with an architecture that encapsulates the different components (hardware, software, networking, and their integration) along with their interactions. A detailed description of the different components, hardware design, deployment issues, and their integration with legacy systems as well as cloud-connectivity is presented. In addition, simple modifications required for transforming the optimization models to an active control technique is also presented. While scalability is provided by the decentralized control, recursive zone thermal model identification, prediction occupant’s thermal sensation, and embedding them within the optimization models enhances the smartness. Consequently, due to the implementation of Smart-TBSA using IoT devices, an otherwise centralized control architecture of the legacy building automation system is transformed to a more scalable and smart decentralized one. The proposed Smart-TBSA and IoT prototype are illustrated on a pilot building in Nanyang Technological University, Singapore having 85 zones. Our results shows that by combining IoT with decentralized control, energy savings up to 20% can be derived. Moreover, we show that legacy building automation system can be transformed into a more smart, adaptable, scalable, and decentralized control by deploying IoT devices without incurring significant costs.

Suggested Citation

  • Png, Ethan & Srinivasan, Seshadhri & Bekiroglu, Korkut & Chaoyang, Jiang & Su, Rong & Poolla, Kameshwar, 2019. "An internet of things upgrade for smart and scalable heating, ventilation and air-conditioning control in commercial buildings," Applied Energy, Elsevier, vol. 239(C), pages 408-424.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:408-424
    DOI: 10.1016/j.apenergy.2019.01.229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919302582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Radhakrishnan, Nikitha & Su, Yang & Su, Rong & Poolla, Kameshwar, 2016. "Token based scheduling for energy management in building HVAC systems," Applied Energy, Elsevier, vol. 173(C), pages 67-79.
    2. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
    3. Adhikari, Rajendra & Pipattanasomporn, M. & Rahman, S., 2018. "An algorithm for optimal management of aggregated HVAC power demand using smart thermostats," Applied Energy, Elsevier, vol. 217(C), pages 166-177.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joowook Kim & Doosam Song & Suyeon Kim & Sohyun Park & Youngjin Choi & Hyunwoo Lim, 2020. "Energy-Saving Potential of Extending Temperature Set-Points in a VRF Air-Conditioned Building," Energies, MDPI, vol. 13(9), pages 1-17, May.
    2. Kinga Stecuła & Radosław Wolniak & Wieslaw Wes Grebski, 2023. "AI-Driven Urban Energy Solutions—From Individuals to Society: A Review," Energies, MDPI, vol. 16(24), pages 1-34, December.
    3. Karam M. Al-Obaidi & Mohataz Hossain & Nayef A. M. Alduais & Husam S. Al-Duais & Hossein Omrany & Amirhosein Ghaffarianhoseini, 2022. "A Review of Using IoT for Energy Efficient Buildings and Cities: A Built Environment Perspective," Energies, MDPI, vol. 15(16), pages 1-32, August.
    4. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    5. Kim, Jeong Hun & Cho, Jae Yong & Jhun, Jeong Pil & Song, Gyeong Ju & Eom, Jong Hyuk & Jeong, Sinwoo & Hwang, Wonseop & Woo, Min Sik & Sung, Tae Hyun, 2021. "Development of a hybrid type smart pen piezoelectric energy harvester for an IoT platform," Energy, Elsevier, vol. 222(C).
    6. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    7. Su, Bing & Wang, Shengwei, 2020. "An agent-based distributed real-time optimal control strategy for building HVAC systems for applications in the context of future IoT-based smart sensor networks," Applied Energy, Elsevier, vol. 274(C).
    8. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
    9. Raman, Naren Srivaths & Devaprasad, Karthikeya & Chen, Bo & Ingley, Herbert A. & Barooah, Prabir, 2020. "Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations," Applied Energy, Elsevier, vol. 279(C).
    10. Adrian Chojecki & Arkadiusz Ambroziak & Piotr Borkowski, 2023. "Fuzzy Controllers Instead of Classical PIDs in HVAC Equipment: Dusting Off a Well-Known Technology and Today’s Implementation for Better Energy Efficiency and User Comfort," Energies, MDPI, vol. 16(7), pages 1-21, March.
    11. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    12. Raman, Naren Srivaths & Chen, Bo & Barooah, Prabir, 2022. "On energy-efficient HVAC operation with Model Predictive Control: A multiple climate zone study," Applied Energy, Elsevier, vol. 324(C).
    13. Rafsanjani, Hamed Nabizadeh & Ghahramani, Ali & Nabizadeh, Amir Hossein, 2020. "iSEA: IoT-based smartphone energy assistant for prompting energy-aware behaviors in commercial buildings," Applied Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behzad Rismanchi & Juan Mahecha Zambrano & Bryan Saxby & Ross Tuck & Mark Stenning, 2019. "Control Strategies in Multi-Zone Air Conditioning Systems," Energies, MDPI, vol. 12(3), pages 1-14, January.
    2. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    3. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    4. Wu, Di & Radhakrishnan, Nikitha & Huang, Sen, 2019. "A hierarchical charging control of plug-in electric vehicles with simple flexibility model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    6. Sivaneasan, Balakrishnan & Kandasamy, Nandha Kumar & Lim, May Lin & Goh, Kwang Ping, 2018. "A new demand response algorithm for solar PV intermittency management," Applied Energy, Elsevier, vol. 218(C), pages 36-45.
    7. Ma, Chao-Qun & Lei, Yu-Tian & Ren, Yi-Shuai & Chen, Xun-Qi & Wang, Yi-Ran & Narayan, Seema, 2024. "Systematic analysis of the blockchain in the energy sector: Trends, issues, and future directions," Telecommunications Policy, Elsevier, vol. 48(2).
    8. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    9. Miqdad Aziz & Kushsairy Kadir & Haziq Kamarul Azman & Kanendra Vijyakumar, 2023. "Optimization of Air Handler Controllers for Comfort Level in Smart Buildings Using Nature Inspired Algorithm," Energies, MDPI, vol. 16(24), pages 1-32, December.
    10. Nina Szczepanik-Scislo & Jacek Schnotale, 2020. "An Air Terminal Device with a Changing Geometry to Improve Indoor Air Quality for VAV Ventilation Systems," Energies, MDPI, vol. 13(18), pages 1-20, September.
    11. Yin, Xiaohong & Wang, Xinli & Li, Shaoyuan & Cai, Wenjian, 2016. "Energy-efficiency-oriented cascade control for vapor compression refrigeration cycle systems," Energy, Elsevier, vol. 116(P1), pages 1006-1019.
    12. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    13. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
    14. Raman, Naren Srivaths & Devaprasad, Karthikeya & Chen, Bo & Ingley, Herbert A. & Barooah, Prabir, 2020. "Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations," Applied Energy, Elsevier, vol. 279(C).
    15. Wang, Hao & Chen, Xiwen & Vital, Natan & Duffy, Edward & Razi, Abolfazl, 2024. "Energy optimization for HVAC systems in multi-VAV open offices: A deep reinforcement learning approach," Applied Energy, Elsevier, vol. 356(C).
    16. Su, Bing & Wang, Shengwei, 2020. "An agent-based distributed real-time optimal control strategy for building HVAC systems for applications in the context of future IoT-based smart sensor networks," Applied Energy, Elsevier, vol. 274(C).
    17. Zeng, Yuan & Zhang, Ruiwen & Wang, Dong & Mu, Yunfei & Jia, Hongjie, 2019. "A regional power grid operation and planning method considering renewable energy generation and load control," Applied Energy, Elsevier, vol. 237(C), pages 304-313.
    18. Greve, Thomas & Teng, Fei & Pollitt, Michael G. & Strbac, Goran, 2018. "A system operator’s utility function for the frequency response market," Applied Energy, Elsevier, vol. 231(C), pages 562-569.
    19. Liu, Yang & Yu, Nanpeng & Wang, Wei & Guan, Xiaohong & Xu, Zhanbo & Dong, Bing & Liu, Ting, 2018. "Coordinating the operations of smart buildings in smart grids," Applied Energy, Elsevier, vol. 228(C), pages 2510-2525.
    20. Schmidt, Mischa & Åhlund, Christer, 2018. "Smart buildings as Cyber-Physical Systems: Data-driven predictive control strategies for energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 742-756.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:408-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.