Chiller Optimization Using Data Mining Based on Prediction Model, Clustering and Association Rule Mining
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
- Yu, Xinran & Ergan, Semiha & Dedemen, Gokmen, 2019. "A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Wang, Yanxia & Li, Kang & Gan, Shaojun & Cameron, Ché, 2019. "Analysis of energy saving potentials in intelligent manufacturing: A case study of bakery plants," Energy, Elsevier, vol. 172(C), pages 477-486.
- Elsa Chaerun Nisa & Yean-Der Kuan, 2021. "Comparative Assessment to Predict and Forecast Water-Cooled Chiller Power Consumption Using Machine Learning and Deep Learning Algorithms," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
- Liangwen Yan & Fengfeng Qian & Wei Li, 2018. "Research on Key Parameters Operation Range of Central Air Conditioning Based on Binary K-Means and Apriori Algorithm," Energies, MDPI, vol. 12(1), pages 1-13, December.
- Jyun-Ting Lu & Yung-Chung Chang & Cheng-Yi Ho, 2015. "The Optimization of Chiller Loading by Adaptive Neuro-Fuzzy Inference System and Genetic Algorithms," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-10, July.
- Zhang, Chaobo & Xue, Xue & Zhao, Yang & Zhang, Xuejun & Li, Tingting, 2019. "An improved association rule mining-based method for revealing operational problems of building heating, ventilation and air conditioning (HVAC) systems," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Chun-Wei Chen & Chun-Chang Li & Chen-Yu Lin, 2020. "Combine Clustering and Machine Learning for Enhancing the Efficiency of Energy Baseline of Chiller System," Energies, MDPI, vol. 13(17), pages 1-20, August.
- Mansu Kim & Sungwon Jung & Joo-won Kang, 2019. "Artificial Neural Network-Based Residential Energy Consumption Prediction Models Considering Residential Building Information and User Features in South Korea," Sustainability, MDPI, vol. 12(1), pages 1-28, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mario Pérez-Gomariz & Antonio López-Gómez & Fernando Cerdán-Cartagena, 2023. "Artificial Neural Networks as Artificial Intelligence Technique for Energy Saving in Refrigeration Systems—A Review," Clean Technol., MDPI, vol. 5(1), pages 1-21, January.
- Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Chunhua & Yuan, Lingyu & Cao, Shanshan & Xia, Guoqiang & Liu, Yanan & Wu, Xiangdong, 2023. "Identifying supply-demand mismatches in district heating system based on association rule mining," Energy, Elsevier, vol. 280(C).
- Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
- Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
- Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
- Hong, Yejin & Yoon, Sungmin & Choi, Sebin, 2023. "Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality," Energy, Elsevier, vol. 265(C).
- Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
- Fan, Cheng & Chen, Ruikun & Mo, Jinhan & Liao, Longhui, 2024. "Personalized federated learning for cross-building energy knowledge sharing: Cost-effective strategies and model architectures," Applied Energy, Elsevier, vol. 362(C).
- Cai, Qingsen & Luo, XingQi & Wang, Peng & Gao, Chunyang & Zhao, Peiyu, 2022. "Hybrid model-driven and data-driven control method based on machine learning algorithm in energy hub and application," Applied Energy, Elsevier, vol. 305(C).
- Du, Han & Zhou, Xinlei & Nord, Natasa & Carden, Yale & Ma, Zhenjun, 2023. "A new data mining strategy for performance evaluation of a shared energy recovery system integrated with data centres and district heating networks," Energy, Elsevier, vol. 285(C).
- Elsa Chaerun Nisa & Yean-Der Kuan, 2021. "Comparative Assessment to Predict and Forecast Water-Cooled Chiller Power Consumption Using Machine Learning and Deep Learning Algorithms," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
- Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air Conditioning Systems via Data Mining. Part II: A Detailed Case Study," Energies, MDPI, vol. 14(1), pages 1-22, December.
- Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).
- Marco Briceño-León & Dennys Pazmiño-Quishpe & Jean-Michel Clairand & Guillermo Escrivá-Escrivá, 2021. "Energy Efficiency Measures in Bakeries toward Competitiveness and Sustainability—Case Studies in Quito, Ecuador," Sustainability, MDPI, vol. 13(9), pages 1-20, May.
- Liu, Jiangyan & Chen, Huanxin & Liu, Jiahui & Li, Zhengfei & Huang, Ronggeng & Xing, Lu & Wang, Jiangyu & Li, Guannan, 2017. "An energy performance evaluation methodology for individual office building with dynamic energy benchmarks using limited information," Applied Energy, Elsevier, vol. 206(C), pages 193-205.
- Fan, Cheng & Xiao, Fu & Zhao, Yang & Wang, Jiayuan, 2018. "Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data," Applied Energy, Elsevier, vol. 211(C), pages 1123-1135.
- Zhang, Shuyang & Zhang, Lun & Zhang, Xiaosong, 2022. "Clustering based on dynamic time warping to extract typical daily patterns from long-term operation data of a ground source heat pump system," Energy, Elsevier, vol. 249(C).
- Guo, Fangzhou & Li, Ao & Yue, Bao & Xiao, Ziwei & Xiao, Fu & Yan, Rui & Li, Anbang & Lv, Yan & Su, Bing, 2024. "Improving the out-of-sample generalization ability of data-driven chiller performance models using physics-guided neural network," Applied Energy, Elsevier, vol. 354(PA).
- Aguilar, J. & Garces-Jimenez, A. & R-Moreno, M.D. & García, Rodrigo, 2021. "A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Du, Zhimin & Liang, Xinbin & Chen, Siliang & Li, Pengcheng & Zhu, Xu & Chen, Kang & Jin, Xinqiao, 2023. "Domain adaptation deep learning and its T-S diagnosis networks for the cross-control and cross-condition scenarios in data center HVAC systems," Energy, Elsevier, vol. 280(C).
- Wang, Peng & Sun, Junqing & Yoon, Sungmin & Zhao, Liang & Liang, Ruobing, 2024. "A global optimization method for data center air conditioning water systems based on predictive optimization control," Energy, Elsevier, vol. 295(C).
More about this item
Keywords
chiller system; operational parameter optimization; data mining; prediction model; neural network; clustering analysis; ARM analysis; energy-saving;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6494-:d:653247. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.