IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6830-d1248369.html
   My bibliography  Save this article

Implementation of Building a Thermal Model to Improve Energy Efficiency of the Central Heating System—A Case Study

Author

Listed:
  • Aleksander Skała

    (Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Jakub Grela

    (Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Dominik Latoń

    (Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Katarzyna Bańczyk

    (Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Michał Markiewicz

    (Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Prof. Stanisława Łojasiewicza 6, 30-348 Krakow, Poland)

  • Andrzej Ożadowicz

    (Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

This paper presents the concept of an innovative control of a central heating system in a multifamily building based on the original thermodynamic model, the resulting architecture of the control system, and the originally designed and manufactured wireless temperature sensors for thermal zones. The novelty of this solution is the developed layers of the control system: distributed measurement and correction analysis, which is based on the existing infrastructure and the local HVAC controller. This approach allows for the effective use of the measured temperature data from thermal zones and finally sending the value of the calculated correction of settings to the controller. Moreover, in the analytical layer, a model was also implemented that calculates the necessary amount of energy based on data from the subsystem of temperature sensors located in the thermal zones of the building. The use of the algorithmic strategy presented in this paper extends the functionality and significantly improves the energy efficiency of the existing, classic, reference heating control algorithm by implementing additional control loops. Additionally, it enables integration with demand-side response systems. The presented concept was successfully tested, achieving real energy savings for heating by 12%. These results are described in a case-study format. The authors believe that this concept can be used in other buildings and thus will have a positive impact on the energy savings used to maintain thermal comfort in buildings and significantly reduce CO 2 emissions.

Suggested Citation

  • Aleksander Skała & Jakub Grela & Dominik Latoń & Katarzyna Bańczyk & Michał Markiewicz & Andrzej Ożadowicz, 2023. "Implementation of Building a Thermal Model to Improve Energy Efficiency of the Central Heating System—A Case Study," Energies, MDPI, vol. 16(19), pages 1-27, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6830-:d:1248369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    2. Hong, Yejin & Yoon, Sungmin, 2022. "Holistic Operational Signatures for an energy-efficient district heating substation in buildings," Energy, Elsevier, vol. 250(C).
    3. Gustafsson, Jonas & Delsing, Jerker & van Deventer, Jan, 2010. "Improved district heating substation efficiency with a new control strategy," Applied Energy, Elsevier, vol. 87(6), pages 1996-2004, June.
    4. Giovanni Bianco & Stefano Bracco & Federico Delfino & Lorenzo Gambelli & Michela Robba & Mansueto Rossi, 2020. "A Building Energy Management System Based on an Equivalent Electric Circuit Model," Energies, MDPI, vol. 13(7), pages 1-23, April.
    5. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    6. Alperen Yayla & Kübra Sultan Świerczewska & Mahmut Kaya & Bahadır Karaca & Yusuf Arayici & Yunus Emre Ayözen & Onur Behzat Tokdemir, 2022. "Artificial Intelligence (AI)-Based Occupant-Centric Heating Ventilation and Air Conditioning (HVAC) Control System for Multi-Zone Commercial Buildings," Sustainability, MDPI, vol. 14(23), pages 1-29, December.
    7. Gadd, Henrik & Werner, Sven, 2013. "Heat load patterns in district heating substations," Applied Energy, Elsevier, vol. 108(C), pages 176-183.
    8. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonghoon Ahn, 2023. "An Adaptive Control Model for Thermal Environmental Factors to Supplement the Sustainability of a Small-Sized Factory," Sustainability, MDPI, vol. 15(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    5. Carli, Raffaele & Dotoli, Mariagrazia & Jantzen, Jan & Kristensen, Michael & Ben Othman, Sarah, 2020. "Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø," Energy, Elsevier, vol. 198(C).
    6. Østergaard, Dorte Skaarup & Tunzi, Michele & Svendsen, Svend, 2021. "What does a well-functioning heating system look like? Investigation of ten Danish buildings that utilize district heating efficiently," Energy, Elsevier, vol. 227(C).
    7. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Hakan İbrahim Tol & Habtamu Bayera Madessa, 2024. "Return-Temperature Reduction at District Heating Systems: Focus on End-User Sites," Energies, MDPI, vol. 17(19), pages 1-46, September.
    9. Hong, Yejin & Yoon, Sungmin, 2022. "Holistic Operational Signatures for an energy-efficient district heating substation in buildings," Energy, Elsevier, vol. 250(C).
    10. Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Fester, Jakob & Østergaard, Peter Friis & Bentsen, Fredrik & Nielsen, Brian Kongsgaard, 2023. "A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data," Energy, Elsevier, vol. 277(C).
    12. Jie, Pengfei & Zhao, Wanyue & Li, Fating & Wei, Fengjun & Li, Jing, 2020. "Optimizing the pressure drop per unit length of district heating piping networks from an environmental perspective," Energy, Elsevier, vol. 202(C).
    13. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
    14. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
    15. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    16. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    18. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    19. Mohammadnia, Ali & Iov, Florin & Rasmussen, Morten Karstoft & Nielsen, Mads Pagh, 2024. "Feasibility assessment of next-generation smart district heating networks by intelligent energy management strategies," Energy, Elsevier, vol. 296(C).
    20. Hyo-Jun Kim & Young-Hum Cho, 2021. "Optimal Control Method of Variable Air Volume Terminal Unit System," Energies, MDPI, vol. 14(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6830-:d:1248369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.