IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5142-d863584.html
   My bibliography  Save this article

The Effect of Microencapsulated PCM Slurry Coolant on the Efficiency of a Shell and Tube Heat Exchanger

Author

Listed:
  • Marcin Kruzel

    (Department of Power Engineering, Faculty of Mechanical Engineering, Koszalin University of Technology, Sniadeckich Street 2, 75-453 Koszalin, Poland)

  • Tadeusz Bohdal

    (Department of Power Engineering, Faculty of Mechanical Engineering, Koszalin University of Technology, Sniadeckich Street 2, 75-453 Koszalin, Poland)

  • Krzysztof Dutkowski

    (Department of Power Engineering, Faculty of Mechanical Engineering, Koszalin University of Technology, Sniadeckich Street 2, 75-453 Koszalin, Poland)

  • Mykola Radchenko

    (Department of Conditioning and Refrigerating, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine)

Abstract

This paper describes the results of experimental studies on heat transfer in a shell and tube heat exchanger during the phase changes of the HFE 7000 refrigerant. The studies were performed using a mixture of water and a microencapsulated phase change material as a coolant. HFE 7000 refrigerant condenses on the external surface of the copper tube, while a mixture of water and phase change materials flows through the channels as coolant. Currently, there is a lack of research describing cooling using phase change materials in heat exchangers. There are a number of publications describing the heat exchange in heat exchangers during phase changes under air or water cooling. Therefore, the research hypothesis was adopted that the use of mixed water and microencapsulated material as a heat transfer fluid would increase the heat capacity and contribute to the enhancement of the heat exchange in the heat exchanger. This will enable an increase in the total heat transfer coefficient and the heat efficiency of the exchanger. Experimental studies describe the process of heat transfer intensification in the above conditions by using the phase transformation of the cooling medium melting. The test results were compared with the results of an experiment in which pure water was used as the reference liquid. The research was carried out in a wide range of refrigerant and coolant parameters: ṁ r = 0.0014–0.0015 kg·s −1 , ṁ c = 0.014–0.016 kg·s −1 , refrigerant saturation temperature Ts = 55–60 °C, coolant temperature at the inlet Tc in = 20–32 °C, and heat flux density q = 7000–7450 W·m −1 . The obtained results confirmed the research hypothesis. There was an average of a 13% increase in the coolant heat transfer coefficient, and the peak increase in αc was over 24%. The average value of the heat transfer coefficient k increased by 5%, and the highest increases in the value of k were noted at T in = 27 °C and amounted to 9% in relation to the reference liquid.

Suggested Citation

  • Marcin Kruzel & Tadeusz Bohdal & Krzysztof Dutkowski & Mykola Radchenko, 2022. "The Effect of Microencapsulated PCM Slurry Coolant on the Efficiency of a Shell and Tube Heat Exchanger," Energies, MDPI, vol. 15(14), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5142-:d:863584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5142/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5142/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeng, Ruolang & Wang, Xin & Chen, Binjiao & Zhang, Yinping & Niu, Jianlei & Wang, Xichun & Di, Hongfa, 2009. "Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux," Applied Energy, Elsevier, vol. 86(12), pages 2661-2670, December.
    2. Ran, Fengming & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2020. "Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Krzysztof Dutkowski & Marcin Kruzel & Bartosz Zajączkowski, 2020. "Determining the Heat of Fusion and Specific Heat of Microencapsulated Phase Change Material Slurry by Thermal Delay Method," Energies, MDPI, vol. 14(1), pages 1-14, December.
    4. Krzysztof Dutkowski & Marcin Kruzel & Tadeusz Bohdal, 2021. "Experimental Studies of the Influence of Microencapsulated Phase Change Material on Thermal Parameters of a Flat Liquid Solar Collector," Energies, MDPI, vol. 14(16), pages 1-15, August.
    5. Yang, Liu & Liu, Shuli & Zheng, Hongfei, 2019. "A comprehensive review of hydrodynamic mechanisms and heat transfer characteristics for microencapsulated phase change slurry (MPCS) in circular tube," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrii Radchenko & Mykola Radchenko & Hanna Koshlak & Roman Radchenko & Serhiy Forduy, 2022. "Enhancing the Efficiency of Integrated Energy Systems by the Redistribution of Heat Based on Monitoring Data," Energies, MDPI, vol. 15(22), pages 1-18, November.
    2. Zongming Yang & Roman Radchenko & Mykola Radchenko & Andrii Radchenko & Victoria Kornienko, 2022. "Cooling Potential of Ship Engine Intake Air Cooling and Its Realization on the Route Line," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    3. Zidong Yu & Terese Løvås & Dmytro Konovalov & Eugeniy Trushliakov & Mykola Radchenko & Halina Kobalava & Roman Radchenko & Andrii Radchenko, 2022. "Investigation of Thermopressor with Incomplete Evaporation for Gas Turbine Intercooling Systems," Energies, MDPI, vol. 16(1), pages 1-19, December.
    4. Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Hanna Koshlak & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) Systems Designing to Forecast Onsite Operation—Part 2: Phenomenological Simulation to Recoup Refrigeration Energy," Energies, MDPI, vol. 16(4), pages 1-17, February.
    5. Zongming Yang & Volodymyr Korobko & Mykola Radchenko & Roman Radchenko, 2022. "Improving Thermoacoustic Low-Temperature Heat Recovery Systems," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    6. Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Anatoliy Pavlenko & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) System Design to Forecast on Site Operation—Part 3: Optimal Solutions to Minimize Sizes," Energies, MDPI, vol. 16(5), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Dutkowski & Marcin Kruzel & Tadeusz Bohdal, 2021. "Experimental Studies of the Influence of Microencapsulated Phase Change Material on Thermal Parameters of a Flat Liquid Solar Collector," Energies, MDPI, vol. 14(16), pages 1-15, August.
    2. Ran, Fengming & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2020. "Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Emiliano Borri & Nan Hua & Adriano Sciacovelli & Dawei Wu & Yulong Ding & Yongliang Li & Vincenza Brancato & Yannan Zhang & Andrea Frazzica & Wenguang Li & Zhibin Yu & Yanio E. Milian & Svetlana Ushak, 2022. "Phase Change Slurries for Cooling and Storage: An Overview of Research Trends and Gaps," Energies, MDPI, vol. 15(19), pages 1-17, September.
    4. Cabaleiro, D. & Agresti, F. & Fedele, L. & Barison, S. & Hermida-Merino, C. & Losada-Barreiro, S. & Bobbo, S. & Piñeiro, M.M., 2022. "Review on phase change material emulsions for advanced thermal management: Design, characterization and thermal performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Huyu Li & Guojun Yu & Huijin Xu & Xue Han & Huihao Liu, 2023. "A Review of the Mathematical Models for the Flow and Heat Transfer of Microencapsulated Phase Change Slurry (MEPCS)," Energies, MDPI, vol. 16(6), pages 1-21, March.
    6. Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
    7. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    8. Qiu, Zhongzhu & Ma, Xiaoli & Li, Peng & Zhao, Xudong & Wright, Andrew, 2017. "Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 246-262.
    9. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Americano da Costa, Marcus V. & Pasamontes, Manuel & Normey-Rico, Julio E. & Guzmán, José L. & Berenguel, Manuel, 2013. "Viability and application of ethanol production coupled with solar cooling," Applied Energy, Elsevier, vol. 102(C), pages 501-509.
    11. Khan, Sohail A. & Hayat, T. & Alsaedi, A. & Ahmad, B., 2021. "Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Borreguero, Ana M. & Luz Sánchez, M. & Valverde, José Luis & Carmona, Manuel & Rodríguez, Juan F., 2011. "Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content," Applied Energy, Elsevier, vol. 88(3), pages 930-937, March.
    13. Wenbo Fang & Saffa Riffat & Yupeng Wu, 2017. "Experimental investigation of evacuated heat pipe solar collector efficiency using phase-change fluid," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(4), pages 392-399.
    14. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    15. Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
    16. Ma, F. & Zhang, P. & Shi, X.J., 2018. "Investigation of thermo-fluidic performance of phase change material slurry and energy transport characteristics," Applied Energy, Elsevier, vol. 227(C), pages 643-654.
    17. Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Babu, Ponnivalavan & Kumar, Sreekala & Tee, Jackson & Linga, Praveen, 2023. "Semi-clathrate hydrate slurry as a cold energy storage and transport medium: Rheological study, energy analysis and enhancement by amino acid," Energy, Elsevier, vol. 264(C).
    18. Krzysztof Dutkowski & Marcin Kruzel, 2023. "The State of the Art on the Flow Characteristic of an Encapsulated Phase-Change Material Slurry," Energies, MDPI, vol. 16(19), pages 1-27, October.
    19. Kawanami, Tsuyoshi & Togashi, Kenichi & Fumoto, Koji & Hirano, Shigeki & Zhang, Peng & Shirai, Katsuaki & Hirasawa, Shigeki, 2016. "Thermophysical properties and thermal characteristics of phase change emulsion for thermal energy storage media," Energy, Elsevier, vol. 117(P2), pages 562-568.
    20. Strušnik, Dušan & Brandl, Daniel & Schober, Helmut & Ferčec, Janko & Avsec, Jurij, 2020. "A simulation model of the application of the solar STAF panel heat transfer and noise reduction with and without a transparent plate: A renewable energy review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5142-:d:863584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.