IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223030116.html
   My bibliography  Save this article

Flow and heat transfer characteristics of microencapsulated phase change material slurry in bonded triangular tubes for thermal energy storage systems

Author

Listed:
  • Zhang, Guanhua
  • Wang, Mengke
  • Yan, Xiaoyu
  • Cui, Guomin
  • Dou, Binlin
  • Lu, Wei
  • Yang, Qiguo

Abstract

Three nanoscale metal oxides composed of nano TiO2, nano Al2O3, and nano MgO were added to the phase change microcapsule slurry for optimising the heat transfer behaviour. The thermal and rheological properties of the resulting microencapsulated phase change materials (MPCMs) and microencapsulated phase change material slurries (MPCSs) were characterized to determine the effects of added metal oxides in optimising the performance of MPCSs. The impacts of factors like metal oxides, concentrations, and flow rates on the heat transfer behaviour of MPCSs were investigated by forced convective heat transfer experiment with various working conditions. Compared to 6 wt% MPCSs, the heat transfer coefficients (hx) of 6 wt% slurries containing 1 wt% TiO2, 1 wt% Al2O3, and 1 wt% MgO increased by 4.0 %, 2.5 %, and 7.13 %, respectively. Nano-MgO showed the most significant heat transfer enhancement effect on MPCSs. Moreover, the heat transfer performance gradually enhanced as a function of the concentration for nano MgO. Overall, the addition of metal oxides enhanced heat transfer by increasing the thermal conductivity of the slurry, as well as improved the micro-convection effect. The proposed MPCSs are promising for applications in solar photovoltaic/thermal (PV/T) systems, chip cooling, thermal management, buildings, and automotive cooling.

Suggested Citation

  • Zhang, Guanhua & Wang, Mengke & Yan, Xiaoyu & Cui, Guomin & Dou, Binlin & Lu, Wei & Yang, Qiguo, 2024. "Flow and heat transfer characteristics of microencapsulated phase change material slurry in bonded triangular tubes for thermal energy storage systems," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030116
    DOI: 10.1016/j.energy.2023.129617
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ran, Fengming & Xu, Changlu & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2021. "Numerical flow characteristics of microencapsulated phase change slurry flowing in a helically coiled tube for thermal energy storage," Energy, Elsevier, vol. 223(C).
    2. Mo, Songping & Ye, Jiarong & Jia, Lisi & Chen, Ying, 2022. "Properties and performance of hybrid suspensions of MPCM/nanoparticles for LED thermal management," Energy, Elsevier, vol. 239(PE).
    3. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    4. Zhang, G.H. & Zhao, C.Y., 2013. "Thermal property investigation of aqueous suspensions of microencapsulated phase change material and carbon nanotubes as a novel heat transfer fluid," Renewable Energy, Elsevier, vol. 60(C), pages 433-438.
    5. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    6. Kong, Minsuk & Alvarado, Jorge L. & Thies, Curt & Morefield, Sean & Marsh, Charles P., 2017. "Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems," Energy, Elsevier, vol. 122(C), pages 691-700.
    7. Li, Wenqiang & Wan, Hao & Lou, Haijian & Fu, Yuliang & Qin, Fei & He, Guoqiang, 2017. "Enhanced thermal management with microencapsulated phase change material particles infiltrated in cellular metal foam," Energy, Elsevier, vol. 127(C), pages 671-679.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ran, Fengming & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2020. "Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Emiliano Borri & Nan Hua & Adriano Sciacovelli & Dawei Wu & Yulong Ding & Yongliang Li & Vincenza Brancato & Yannan Zhang & Andrea Frazzica & Wenguang Li & Zhibin Yu & Yanio E. Milian & Svetlana Ushak, 2022. "Phase Change Slurries for Cooling and Storage: An Overview of Research Trends and Gaps," Energies, MDPI, vol. 15(19), pages 1-17, September.
    3. Talluri, Teressa & Angani, Amarnathvarma & Shin, kyooJae & Hwang, Myeong-Hwan & Cha, Hyun-Rok, 2024. "A novel design of lithium-polymer pouch battery pack with passive thermal management for electric vehicles," Energy, Elsevier, vol. 304(C).
    4. Aramesh, M. & Shabani, B., 2022. "Metal foam-phase change material composites for thermal energy storage: A review of performance parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Sarı, Ahmet & Hekimoğlu, Gökhan & Tyagi, V.V. & Sharma, R.K., 2020. "Evaluation of pumice for development of low-cost and energy-efficient composite phase change materials and lab-scale thermoregulation performances of its cementitious plasters," Energy, Elsevier, vol. 207(C).
    7. Jan Wrana & Wojciech Struzik & Bartłomiej Kwiatkowski & Piotr Gleń, 2022. "Release of Energy from Groundwater/with Reduction in CO 2 Emissions of More Than 50% from HVAC in the Extension and Revitalization of the Former Palace of the Sobieski Family in Lublin," Energies, MDPI, vol. 15(18), pages 1-11, September.
    8. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    9. Xu, Lingling & Pu, Liang & Angelo, Zarrella & Zhang, Derun & Dai, Minghao & Zhang, Shengqi, 2022. "An experimental investigation on performance of microencapsulated phase change material slurry in ground heat exchanger," Renewable Energy, Elsevier, vol. 198(C), pages 296-305.
    10. Zuo, Peixian & Liu, Zhong & Zhang, Hua & Dai, Dasong & Fu, Ziyan & Corker, Jorge & Fan, Mizi, 2023. "Formulation and phase change mechanism of Capric acid/Octadecanol binary composite phase change materials," Energy, Elsevier, vol. 270(C).
    11. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    12. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Hong, Yuxiang & Cheng, Zihao & Li, Qing & Jia, Shuao & Xiao, Chengxiang & Du, Juan, 2024. "Thermal energy storage, heat transfer, and thermodynamic behaviors of nano phase change material in a concentric double tube unit with triple tree fins," Renewable Energy, Elsevier, vol. 235(C).
    14. Elminshawy, Nabil A.S. & El-Damhogi, D.G. & Ibrahim, I.A. & Elminshawy, Ahmed & Osama, Amr, 2022. "Assessment of floating photovoltaic productivity with fins-assisted passive cooling," Applied Energy, Elsevier, vol. 325(C).
    15. Hossein Javadi & Seyed Soheil Mousavi Ajarostaghi & Marc A. Rosen & Mohsen Pourfallah, 2018. "A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance," Sustainability, MDPI, vol. 10(12), pages 1-22, November.
    16. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    17. Yu, Haiyan & Zhang, Haochun & Buahom, Piyapong & Liu, Jing & Xia, Xinlin & Park, Chul B., 2021. "Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors," Energy, Elsevier, vol. 233(C).
    18. Yang, Kairan & Guo, Weimin & Zhang, Peng, 2024. "Cold energy transport and release characteristics of CO2+TBAB hydrate slurry flow with hydrate dissociation," Energy, Elsevier, vol. 294(C).
    19. Boldoo, Tsogtbilegt & Chinnasamy, Veerakumar & Cho, Honghyun, 2024. "Enhancing efficiency and sustainability: Utilizing high energy density paraffin-based various PCM emulsions for low-medium temperature applications," Energy, Elsevier, vol. 303(C).
    20. Bui, Van Ga & Tu Bui, Thi Minh & Ong, Hwai Chyuan & Nižetić, Sandro & Bui, Van Hung & Xuan Nguyen, Thi Thanh & Atabani, A.E. & Štěpanec, Libor & Phu Pham, Le Hoang & Hoang, Anh Tuan, 2022. "Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.