IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9321-d998128.html
   My bibliography  Save this article

Single-Phase Five-Level Multilevel Inverter Based on a Transistors Six-Pack Module

Author

Listed:
  • Flavio A. Garcia-Santiago

    (CERREY S.A. de C.V., Av. República Mexicana #300, San Nicolás de los Garza 66450, Mexico)

  • Julio C. Rosas-Caro

    (Facultad de Ingeniería, Universidad Panamericana, Alvaro del Portillo 49, Zapopan 45010, Mexico)

  • Jesus E. Valdez-Resendiz

    (Faculty of Engineering, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, Mexico)

  • Jonathan C. Mayo-Maldonado

    (Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S102TN, UK)

  • Antonio Valderrabano-Gonzalez

    (Facultad de Ingeniería, Universidad Panamericana, Alvaro del Portillo 49, Zapopan 45010, Mexico)

  • Hector R. Robles-Campos

    (Facultad de Ingeniería, Universidad Panamericana, Alvaro del Portillo 49, Zapopan 45010, Mexico)

Abstract

This article introduces a single-phase five-level multilevel inverter based on six switches and two transformers. The proposed converter requires a single dc input source with low voltage. The disposition of switches makes it possible to build the converter with a transistors six-pack module off-the-shelves, traditionally used to build three-phase inverters, which simplifies the manufacturing process. The converter increases the voltage with two transformers; for that reason, it does not require an auxiliary step-up converter. The use of transformers (with the transformer’s turns ratio) allows for using the same topology for several input voltage levels. To verify the operation of the proposed multilevel inverter, a computer-based simulation was performed with PSIM, a software that considers parasitic components. The results show that the proposed converter can work properly.

Suggested Citation

  • Flavio A. Garcia-Santiago & Julio C. Rosas-Caro & Jesus E. Valdez-Resendiz & Jonathan C. Mayo-Maldonado & Antonio Valderrabano-Gonzalez & Hector R. Robles-Campos, 2022. "Single-Phase Five-Level Multilevel Inverter Based on a Transistors Six-Pack Module," Energies, MDPI, vol. 15(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9321-:d:998128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Subhashree Choudhury & Mohit Bajaj & Taraprasanna Dash & Salah Kamel & Francisco Jurado, 2021. "Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-48, September.
    2. Saud Alotaibi & Ahmed Darwish, 2021. "Modular Multilevel Converters for Large-Scale Grid-Connected Photovoltaic Systems: A Review," Energies, MDPI, vol. 14(19), pages 1-30, September.
    3. Ali Bughneda & Mohamed Salem & Anna Richelli & Dahaman Ishak & Salah Alatai, 2021. "Review of Multilevel Inverters for PV Energy System Applications," Energies, MDPI, vol. 14(6), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saud Alotaibi & Xiandong Ma & Ahmed Darwish, 2022. "Dual Isolated Multilevel Modular Inverter with Novel Switching and Voltage Stress Suppression," Energies, MDPI, vol. 15(14), pages 1-18, July.
    2. Shaik Nyamathulla & Dhanamjayulu Chittathuru, 2023. "A Review of Multilevel Inverter Topologies for Grid-Connected Sustainable Solar Photovoltaic Systems," Sustainability, MDPI, vol. 15(18), pages 1-44, September.
    3. Ismail Aouichak & Sébastien Jacques & Sébastien Bissey & Cédric Reymond & Téo Besson & Jean-Charles Le Bunetel, 2022. "A Bidirectional Grid-Connected DC–AC Converter for Autonomous and Intelligent Electricity Storage in the Residential Sector," Energies, MDPI, vol. 15(3), pages 1-19, February.
    4. Ahmed Darwish & George A. Aggidis, 2022. "A Review on Power Electronic Topologies and Control for Wave Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.
    5. Fatemeh Nasr Esfahani & Ahmed Darwish & Ahmed Massoud, 2022. "PV/Battery Grid Integration Using a Modular Multilevel Isolated SEPIC-Based Converter," Energies, MDPI, vol. 15(15), pages 1-25, July.
    6. Abdulkarim Athwer & Ahmed Darwish, 2023. "A Review on Modular Converter Topologies Based on WBG Semiconductor Devices in Wind Energy Conversion Systems," Energies, MDPI, vol. 16(14), pages 1-44, July.
    7. Muhyaddin Rawa & Prem P & Jagabar Sathik Mohamed Ali & Marif Daula Siddique & Saad Mekhilef & Addy Wahyudie & Mehdi Seyedmahmoudian & Alex Stojcevski, 2021. "A New Multilevel Inverter Topology with Reduced DC Sources," Energies, MDPI, vol. 14(15), pages 1-21, August.
    8. Muhammad Ahsan & Jose Rodriguez & Mohamed Abdelrahem, 2023. "Distributed Control Algorithm for DC Microgrid Using Higher-Order Multi-Agent System," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    9. Muhammad Ayyaz Tariq & Umar Tabrez Shami & Muhammad Salman Fakhar & Syed Abdul Rahman Kashif & Ghulam Abbas & Nasim Ullah & Alsharef Mohammad & Mohamed Emad Farrag, 2022. "Dragonfly Algorithm-Based Optimization for Selective Harmonics Elimination in Cascaded H-Bridge Multilevel Inverters with Statistical Comparison," Energies, MDPI, vol. 15(18), pages 1-18, September.
    10. Ali Abedaljabar Al-Samawi & Hafedh Trabelsi, 2022. "New Nine-Level Cascade Multilevel Inverter with a Minimum Number of Switches for PV Systems," Energies, MDPI, vol. 15(16), pages 1-25, August.
    11. Saud Alotaibi & Ahmed Darwish, 2021. "Modular Multilevel Converters for Large-Scale Grid-Connected Photovoltaic Systems: A Review," Energies, MDPI, vol. 14(19), pages 1-30, September.
    12. Bo-Yu Luo & Ramadhani Kurniawan Subroto & Chang-Zhi Wang & Kuo-Lung Lian, 2022. "An Improved Sliding Mode Control with Integral Surface for a Modular Multilevel Power Converter," Energies, MDPI, vol. 15(5), pages 1-18, February.
    13. Truong-Duy Duong & Minh-Khai Nguyen & Tan-Tai Tran & Dai-Van Vo & Young-Cheol Lim & Joon-Ho Choi, 2022. "Topology Review of Three-Phase Two-Level Transformerless Photovoltaic Inverters for Common-Mode Voltage Reduction," Energies, MDPI, vol. 15(9), pages 1-18, April.
    14. Subhashree Choudhury & Shiba Kumar Acharya & Rajendra Kumar Khadanga & Satyajit Mohanty & Jehangir Arshad & Ateeq Ur Rehman & Muhammad Shafiq & Jin-Ghoo Choi, 2021. "Harmonic Profile Enhancement of Grid Connected Fuel Cell through Cascaded H-Bridge Multi-Level Inverter and Improved Squirrel Search Optimization Technique," Energies, MDPI, vol. 14(23), pages 1-21, November.
    15. Yousef Alharbi & Ahmed Darwish, 2023. "Control of Cuk-Based Microinverter Topology with Energy Storage for Residential PV Applications," Energies, MDPI, vol. 16(5), pages 1-23, February.
    16. Mohamed Salem & Anna Richelli & Khalid Yahya & Muhammad Najwan Hamidi & Tze-Zhang Ang & Ibrahim Alhamrouni, 2022. "A Comprehensive Review on Multilevel Inverters for Grid-Tied System Applications," Energies, MDPI, vol. 15(17), pages 1-40, August.
    17. Fatemeh Nasr Esfahani & Ahmed Darwish & Barry W. Williams, 2022. "Power Converter Topologies for Grid-Tied Solar Photovoltaic (PV) Powered Electric Vehicles (EVs)—A Comprehensive Review," Energies, MDPI, vol. 15(13), pages 1-28, June.
    18. Kommoju Naga Durga Veera Sai Eswar & Mohan Arun Noyal Doss & Pradeep Vishnuram & Ali Selim & Mohit Bajaj & Hossam Kotb & Salah Kamel, 2022. "Comprehensive Study on Reduced DC Source Count: Multilevel Inverters and Its Design Topologies," Energies, MDPI, vol. 16(1), pages 1-25, December.
    19. Subhashree Choudhury & Mohit Bajaj & Taraprasanna Dash & Salah Kamel & Francisco Jurado, 2021. "Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-48, September.
    20. Md. Tariqul Islam & Md. Ahsanul Alam & Molla Shahadat Hossain Lipu & Kamrul Hasan & Sheikh Tanzim Meraj & Hasan Masrur & Md. Fayzur Rahman, 2023. "A Single DC Source Five-Level Switched Capacitor Inverter for Grid-Integrated Solar Photovoltaic System: Modeling and Performance Investigation," Sustainability, MDPI, vol. 15(10), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9321-:d:998128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.