IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p1976-d766669.html
   My bibliography  Save this article

Optimization-Based Capacitor Balancing Method with Customizable Switching Reduction for CHB Converters

Author

Listed:
  • Luis Galván

    (Electronical Engineering Department, University of Seville, 41092 Seville, Spain)

  • Pablo J. Gómez

    (Electronical Engineering Department, University of Seville, 41092 Seville, Spain)

  • Eduardo Galván

    (Electronical Engineering Department, University of Seville, 41092 Seville, Spain)

  • Juan M. Carrasco

    (Electronical Engineering Department, University of Seville, 41092 Seville, Spain)

Abstract

This paper presents a method for switching reduction in cascaded H-bridge converters. Given the wide applicability of this topology, it would be especially desirable to increase its efficiency with switching losses reduction techniques. Since this type of converter requires voltage balancing methods, several modulation methods consider the possibility of combining the balancing and switching reduction goals together. In this paper, a previously disclosed optimization-based balance method was modified further to consider the switching losses in its objective function. Each commutation was penalized in proportion to the phase current and the module voltage, thus avoiding commutations that would produce the most losses but tolerating low-losses commutations. The structure of the original method was maintained so that the algorithm could be applied with minimal change. The results show that it is possible to reduce the switching up to 14% without any noticeable drawback and up to 22% at the cost of a greater DC-link ripple. It is also possible to selectively reduce the effective switching frequency of only some modules, making it significantly low. This extends the adaptability of the converter, possibly allowing hybrid converters with modules of different transistor technologies.

Suggested Citation

  • Luis Galván & Pablo J. Gómez & Eduardo Galván & Juan M. Carrasco, 2022. "Optimization-Based Capacitor Balancing Method with Customizable Switching Reduction for CHB Converters," Energies, MDPI, vol. 15(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1976-:d:766669
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/1976/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/1976/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md. Tariqul Islam & Hady H. Fayek & Eugen Rusu & Md. Fayzur Rahman, 2021. "A Novel Hexagonal-Shaped Multilevel Inverter with Reduced Switches for Grid-Integrated Photovoltaic System," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah M. Noman & Abdulaziz Alkuhayli & Abdullrahman A. Al-Shamma’a & Khaled E. Addoweesh, 2022. "Hybrid MLI Topology Using Open-End Windings for Active Power Filter Applications," Energies, MDPI, vol. 15(17), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justin Ugwu & Kenneth C. Odo & Chibuike Peter Ohanu & Jorge García & Ramy Georgious, 2022. "Comprehensive Review of Renewable Energy Communication Modeling for Smart Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    2. Sathyavani Bandela & Tara Kalyani Sandipamu & Hari Priya Vemuganti & Shriram S. Rangarajan & E. Randolph Collins & Tomonobu Senjyu, 2023. "An Efficacious Modulation Gambit Using Fewer Switches in a Multilevel Inverter," Sustainability, MDPI, vol. 15(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1976-:d:766669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.