Synergistic Catalytic Effect of Sulphated Zirconia—HCl System for Levulinic Acid and Solid Residue Production Using Microwave Irradiation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Eugenio Meloni, 2022. "Electrification of Chemical Engineering: A New Way to Intensify Chemical Processes," Energies, MDPI, vol. 15(15), pages 1-3, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
- Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
- Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
- Mäkelä, Mikko & Yoshikawa, Kunio, 2016. "Simulating hydrothermal treatment of sludge within a pulp and paper mill," Applied Energy, Elsevier, vol. 173(C), pages 177-183.
- Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
- Tobias Pröll & Florian Zerobin, 2019. "Biomass-based negative emission technology options with combined heat and power generation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1307-1324, October.
- Tariqul Islam & Yanliang Li & Hefa Cheng, 2021. "Biochars and Engineered Biochars for Water and Soil Remediation: A Review," Sustainability, MDPI, vol. 13(17), pages 1-25, September.
- Chater, Hamza & Asbik, Mohamed, 2024. "Innovative mathematical approach for hydrothermal carbonization process using an inverse method: Experimental analysis, rheology behavior, and numerical comparative investigation," Energy, Elsevier, vol. 290(C).
- Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
- Leslie Lara-Ramos & Ana Cervera-Mata & Jesús Fernández-Bayo & Miguel Navarro-Alarcón & Gabriel Delgado & Alejandro Fernández-Arteaga, 2023. "Hydrochars Derived from Spent Coffee Grounds as Zn Bio-Chelates for Agronomic Biofortification," Sustainability, MDPI, vol. 15(13), pages 1-13, July.
- Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
- Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.
- Eunhye Song & Ho Kim & Kyung Woo Kim & Young-Man Yoon, 2023. "Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure," Energies, MDPI, vol. 16(7), pages 1-14, April.
- Poritosh Roy & Animesh Dutta & Jim Gallant, 2018. "Hydrothermal Carbonization of Peat Moss and Herbaceous Biomass (Miscanthus): A Potential Route for Bioenergy," Energies, MDPI, vol. 11(10), pages 1-14, October.
- Neel Patel & Bishnu Acharya & Prabir Basu, 2021. "Hydrothermal Carbonization (HTC) of Seaweed (Macroalgae) for Producing Hydrochar," Energies, MDPI, vol. 14(7), pages 1-16, March.
- Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
- Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
- Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
- Cheng, Chen & Ding, Lu & Guo, Qinghua & He, Qing & Gong, Yan & Alexander, Kozlov N. & Yu, Guangsuo, 2022. "Process analysis and kinetic modeling of coconut shell hydrothermal carbonization," Applied Energy, Elsevier, vol. 315(C).
- Shen, Yafei & Yu, Shili & Ge, Shun & Chen, Xingming & Ge, Xinlei & Chen, Mindong, 2017. "Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale," Energy, Elsevier, vol. 118(C), pages 312-323.
More about this item
Keywords
microwave catalysis; sulphated zirconia; heterogeneous catalysis; lignocellulosic biomass; levulinic acid; hydrochars;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1582-:d:516086. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.