IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5420-d872872.html
   My bibliography  Save this article

A Review on Deactivation and Regeneration of Catalysts for Dimethyl Ether Synthesis

Author

Listed:
  • Joanna Sobczak

    (Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland)

  • Izabela Wysocka

    (Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland)

  • Stanisław Murgrabia

    (Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland)

  • Andrzej Rogala

    (Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland)

Abstract

The deactivation of catalysts and their regeneration are two very important challenges that need to be addressed for many industrial processes. The most quoted reasons for the deterioration of dimethyl ether synthesis (DME) concern the sintering and the hydrothermal leaching of copper particles, their migration to acid sites, the partial formation of copper and zinc hydroxycarbonates, the formation of carbon deposits, and surface contamination with undesirable compounds present in syngas. This review summarises recent findings in the field of DME catalyst deactivation and regeneration. The most-used catalysts, their modifications, along with a comparison of the basic parameters, deactivation approaches, and regeneration methods are presented.

Suggested Citation

  • Joanna Sobczak & Izabela Wysocka & Stanisław Murgrabia & Andrzej Rogala, 2022. "A Review on Deactivation and Regeneration of Catalysts for Dimethyl Ether Synthesis," Energies, MDPI, vol. 15(15), pages 1-39, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5420-:d:872872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5420/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5420/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yousefi, Ahmad & Eslamloueyan, Reza & Kazerooni, Nooshin Moradi, 2017. "Optimal conditions in direct dimethyl ether synthesis from syngas utilizing a dual-type fluidized bed reactor," Energy, Elsevier, vol. 125(C), pages 275-286.
    2. Zuo, Hongmei & Mao, Dongsen & Guo, Xiaoming & Yu, Jun, 2018. "Highly efficient synthesis of dimethyl ether directly from biomass-derived gas over Li-modified Cu-ZnO-Al2O3/HZSM-5 hybrid catalyst," Renewable Energy, Elsevier, vol. 116(PA), pages 38-47.
    3. Dagde Kenneth Kekpugile & Harry Uduak Sylvanus, 2016. "Modeling of a Tubular Fixed-Bed Reactor for the Production of Dimethyl Ether Using Alumina Catalyst," International Journal of Chemical and Process Engineering Research, Conscientia Beam, vol. 3(2), pages 23-34.
    4. Vakili, R. & Pourazadi, E. & Setoodeh, P. & Eslamloueyan, R. & Rahimpour, M.R., 2011. "Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor," Applied Energy, Elsevier, vol. 88(4), pages 1211-1223, April.
    5. Joelsson, Jonas M. & Gustavsson, Leif, 2012. "Reductions in greenhouse gas emissions and oil use by DME (di-methyl ether) and FT (Fischer-Tropsch) diesel production in chemical pulp mills," Energy, Elsevier, vol. 39(1), pages 363-374.
    6. Chen, Wei-Hsin & Lin, Bo-Jhih & Lee, How-Ming & Huang, Men-Han, 2012. "One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity," Applied Energy, Elsevier, vol. 98(C), pages 92-101.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Hsin & Hsu, Chih-Liang & Wang, Xiao-Dong, 2016. "Thermodynamic approach and comparison of two-step and single step DME (dimethyl ether) syntheses with carbon dioxide utilization," Energy, Elsevier, vol. 109(C), pages 326-340.
    2. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    3. Chen, Wei-Hsin & Lin, Shih-Cheng, 2016. "Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery," Applied Energy, Elsevier, vol. 162(C), pages 1141-1152.
    4. Xu, Shuaiqing & Wang, Yang & Zhang, Xiao & Zhen, Xudong & Tao, Chengjun, 2012. "Development of a novel common-rail type Dimethyl ether (DME) injector," Applied Energy, Elsevier, vol. 94(C), pages 1-12.
    5. Gustavsson, Christer & Hulteberg, Christian, 2016. "Co-production of gasification based biofuels in existing combined heat and power plants – Analysis of production capacity and integration potential," Energy, Elsevier, vol. 111(C), pages 830-840.
    6. Luu, Minh Tri & Milani, Dia & Sharma, Manish & Zeaiter, Joseph & Abbas, Ali, 2016. "Model-based analysis of CO2 revalorization for di-methyl ether synthesis driven by solar catalytic reforming," Applied Energy, Elsevier, vol. 177(C), pages 863-878.
    7. Arab Aboosadi, Z. & Jahanmiri, A.H. & Rahimpour, M.R., 2011. "Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method," Applied Energy, Elsevier, vol. 88(8), pages 2691-2701, August.
    8. Chen, Wei-Hsin & Lin, Shih-Cheng, 2015. "Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation," Energy, Elsevier, vol. 82(C), pages 206-217.
    9. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    10. Katundu Imasiku & Valerie Thomas & Etienne Ntagwirumugara, 2019. "Unraveling Green Information Technology Systems as a Global Greenhouse Gas Emission Game-Changer," Administrative Sciences, MDPI, vol. 9(2), pages 1-29, June.
    11. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Balance and saving of GHG emissions in thermochemical biorefineries," Applied Energy, Elsevier, vol. 147(C), pages 444-455.
    12. Ljungstedt, Hanna & Pettersson, Karin & Harvey, Simon, 2013. "Evaluation of opportunities for heat integration of biomass-based Fischer–Tropsch crude production at Scandinavian kraft pulp and paper mill sites," Energy, Elsevier, vol. 62(C), pages 349-361.
    13. Rahimpour, M.R. & Dehnavi, M.R. & Allahgholipour, F. & Iranshahi, D. & Jokar, S.M., 2012. "Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: A review," Applied Energy, Elsevier, vol. 99(C), pages 496-512.
    14. Chen, Hsi-Jen & Fan, Chei-Wei & Yu, Chiou-Shia, 2013. "Analysis, synthesis, and design of a one-step dimethyl ether production via a thermodynamic approach," Applied Energy, Elsevier, vol. 101(C), pages 449-456.
    15. Enbin Liu & Xudong Lu & Daocheng Wang, 2023. "A Systematic Review of Carbon Capture, Utilization and Storage: Status, Progress and Challenges," Energies, MDPI, vol. 16(6), pages 1-48, March.
    16. Zuo, Hongmei & Mao, Dongsen & Guo, Xiaoming & Yu, Jun, 2018. "Highly efficient synthesis of dimethyl ether directly from biomass-derived gas over Li-modified Cu-ZnO-Al2O3/HZSM-5 hybrid catalyst," Renewable Energy, Elsevier, vol. 116(PA), pages 38-47.
    17. Bakhtyari, Ali & Bardool, Roghayeh & Rahimpour, Mohammad Reza & Iulianelli, Adolfo, 2021. "Dehydration of bio-alcohols in an enhanced membrane-assisted reactor: A rigorous sensitivity analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 177(C), pages 519-543.
    18. Johansson, Daniella & Franck, Per-Åke & Pettersson, Karin & Berntsson, Thore, 2013. "Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances," Energy, Elsevier, vol. 59(C), pages 387-401.
    19. Kan, Xiang & Wei, Liping & Li, Xian & Li, Han & Zhou, Dezhi & Yang, Wenming & Wang, Chi-Hwa, 2020. "Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 262(C).
    20. Chen, Wei-Hsin & Lin, Bo-Jhih & Lee, How-Ming & Huang, Men-Han, 2012. "One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity," Applied Energy, Elsevier, vol. 98(C), pages 92-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5420-:d:872872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.