IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics0306261920300544.html
   My bibliography  Save this article

Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine

Author

Listed:
  • Kan, Xiang
  • Wei, Liping
  • Li, Xian
  • Li, Han
  • Zhou, Dezhi
  • Yang, Wenming
  • Wang, Chi-Hwa

Abstract

Three dual-fuel strategies, i.e. Strategy S (syngas-biodiesel), Strategy U (upgraded syngas-biodiesel), and Strategy D (DME-biodiesel), for utilization of syngas and biodiesel from biomass wastes in internal combustion engines have been proposed in this study. To compare both the combustion and emission performance of the three strategies, an integrated KIVA4-CHEMKIN CFD platform was constructed implementing a newly combined reaction mechanism. Effects of three dual-fuel strategies have been compared against each other in terms of indicated power, NOx and soot emission. At different engine loads, it was found that the indicated power of all strategies increased with the increasing supplement ratio. Strategy S and Strategy U predict higher indicated power than Strategy D at the high engine load, while lower indicated power than Strategy D at the low engine load. As regards to the NOx emission, an increase in the fuel supplement ratio increases the NOx emission (g/kWh) for both Strategy S and Strategy U at high engine loads, while decreases the NOx emission (g/kWh) due to the enhanced indicated power. Strategy D has relatively higher NOx emission (g/kWh) than Strategy S and Strategy U at all loads. With the increase in fuel supplement ratio, the soot emission generally shows a decreasing trend at all engine loads for all strategies, and Strategy D emits less soot than Strategy S and Strategy U in the cases of high fuel supplement ratio (>0.4) for all engine load conditions.

Suggested Citation

  • Kan, Xiang & Wei, Liping & Li, Xian & Li, Han & Zhou, Dezhi & Yang, Wenming & Wang, Chi-Hwa, 2020. "Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300544
    DOI: 10.1016/j.apenergy.2020.114542
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920300544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Hui & Yang, Wenming & Li, Jing & Maghbouli, Amin & Chua, Kian Jon & Chou, Siaw Kiang, 2014. "A numerical modeling on the emission characteristics of a diesel engine fueled by diesel and biodiesel blend fuels," Applied Energy, Elsevier, vol. 130(C), pages 458-465.
    2. Chen, Hao & Su, Xin & He, Jingjing & Xie, Bin, 2019. "Investigation on combustion and emission characteristics of a common rail diesel engine fueled with diesel/n-pentanol/methanol blends," Energy, Elsevier, vol. 167(C), pages 297-311.
    3. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    4. Li, Jing & Yu, Xiao & Xie, Jingcheng & Yang, Wenming, 2020. "Mitigation of high pressure rise rate by varying IVC timing and EGR rate in an RCCI engine with high premixed fuel ratio," Energy, Elsevier, vol. 192(C).
    5. Costa, M. & La Villetta, M. & Massarotti, N. & Piazzullo, D. & Rocco, V., 2017. "Numerical analysis of a compression ignition engine powered in the dual-fuel mode with syngas and biodiesel," Energy, Elsevier, vol. 137(C), pages 969-979.
    6. Yousefi, Ahmad & Eslamloueyan, Reza & Kazerooni, Nooshin Moradi, 2017. "Optimal conditions in direct dimethyl ether synthesis from syngas utilizing a dual-type fluidized bed reactor," Energy, Elsevier, vol. 125(C), pages 275-286.
    7. E, Jiaqiang & Liu, Guanlin & Zhang, Zhiqing & Han, Dandan & Chen, Jingwei & Wei, Kexiang & Gong, Jinke & Yin, Zibin, 2019. "Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model," Applied Energy, Elsevier, vol. 243(C), pages 321-335.
    8. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    9. Liu, Teng & E., Jiaqiang & Yang, Wenming & Hui, An & Cai, Hao, 2016. "Development of a skeletal mechanism for biodiesel blend surrogates with varying fatty acid methyl esters proportion," Applied Energy, Elsevier, vol. 162(C), pages 278-288.
    10. Jeon, Joonho & Kwon, Sang Il & Park, Yong Hee & Oh, Yunjung & Park, Sungwook, 2014. "Visualizations of combustion and fuel/air mixture formation processes in a single cylinder engine fueled with DME," Applied Energy, Elsevier, vol. 113(C), pages 294-301.
    11. Kan, Xiang & Zhou, Dezhi & Yang, Wenming & Zhai, Xiaoqiang & Wang, Chi-Hwa, 2018. "An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine," Applied Energy, Elsevier, vol. 212(C), pages 210-222.
    12. Zhang, Fan & Xu, Deping & Wang, Yonggang & Argyle, Morris D. & Fan, Maohong, 2015. "CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst," Applied Energy, Elsevier, vol. 145(C), pages 295-305.
    13. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    14. Mishra, Purna Chandra & Nayak, Swarup Kumar, 2018. "Pre-and post-mixed hybrid biodiesel blends as alternative energy fuels-an experimental case study on turbo-charged direct injection diesel engine," Energy, Elsevier, vol. 160(C), pages 910-923.
    15. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    16. Abdelfattah, Mohammed Saleh Hamed & Abu-Elyazeed, Osayed Sayed Mohamed & Abd El mawla, Ebtsam & Abdelazeem, Marwa Ahmed, 2018. "On biodiesels from castor raw oil using catalytic pyrolysis," Energy, Elsevier, vol. 143(C), pages 950-960.
    17. Shahbaz, Muhammad & Yusup, Suzana & Inayat, Abrar & Patrick, David Onoja & Pratama, Angga, 2016. "Application of response surface methodology to investigate the effect of different variables on conversion of palm kernel shell in steam gasification using coal bottom ash," Applied Energy, Elsevier, vol. 184(C), pages 1306-1315.
    18. Zhou, Dezhi & Yang, Wenming & Zhao, Feiyang & Li, Jing, 2017. "Dual-fuel RCCI engine combustion modeling with detailed chemistry considering flame propagation in partially premixed combustion," Applied Energy, Elsevier, vol. 203(C), pages 164-176.
    19. E, Jiaqiang & Liu, Teng & Yang, Wenming & Deng, Yuanwang & Gong, Jinke, 2016. "A skeletal mechanism modeling on soot emission characteristics for biodiesel surrogates with varying fatty acid methyl esters proportion," Applied Energy, Elsevier, vol. 181(C), pages 322-331.
    20. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    21. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    22. Kim, Hyung Jun & Park, Su Han & Lee, Kwan Soo & Lee, Chang Sik, 2011. "A study of spray strategies on improvement of engine performance and emissions reduction characteristics in a DME fueled diesel engine," Energy, Elsevier, vol. 36(3), pages 1802-1813.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Attia, Ali M.A. & Kulchitskiy, A.R. & Nour, Mohamed & El-Seesy, Ahmed I. & Nada, Sameh A., 2022. "The influence of castor biodiesel blending ratio on engine performance including the determined diesel particulate matters composition," Energy, Elsevier, vol. 239(PA).
    3. Liu, Junheng & Wu, Pengcheng & Ji, Qian & Sun, Ping & Wang, Pan & Meng, Zhongwei & Ma, Hongjie, 2022. "Experimental study on effects of pilot injection strategy on combustion and emission characteristics of diesel/methanol dual-fuel engine under low load," Energy, Elsevier, vol. 247(C).
    4. Gourich, Wail & Chan, Eng-Seng & Ng, Wei Zhe & Obon, Aaron Anthony & Maran, Kireshwen & Ong, Yi Hui & Lee, Chin Loong & Tan, Jully & Song, Cher Pin, 2022. "Life cycle benefits of enzymatic biodiesel co-produced in palm oil mills from sludge palm oil as renewable fuel for rural electrification," Applied Energy, Elsevier, vol. 325(C).
    5. Siddharth Jain, 2023. "An Assessment of the Operation and Emission Characteristics of a Diesel Engine Powered by a New Biofuel Prepared Using In Situ Transesterification of a Dry Spirogyra Algae–Jatropha Powder Mixture," Energies, MDPI, vol. 16(3), pages 1-16, February.
    6. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
    7. Victor Arruda Ferraz de Campos & Luís Carmo-Calado & Roberta Mota-Panizio & Vitor Matos & Valter Bruno Silva & Paulo S. Brito & Daniela F. L. Eusébio & Celso Eduardo Tuna & José Luz Silveira, 2023. "A Waste-to-Energy Technical Approach: Syngas–Biodiesel Blend for Power Generation," Energies, MDPI, vol. 16(21), pages 1-18, October.
    8. Kheiralipour, Kamran & Khoobbakht, Mohammad & Karimi, Mahmoud, 2024. "Effect of biodiesel on environmental impacts of diesel mechanical power generation by life cycle assessment," Energy, Elsevier, vol. 289(C).
    9. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Teng & E, Jiaqiang & Yang, W.M. & Deng, Yuangwang & An, H. & Zhang, Zhiqing & Pham, Minhhieu, 2018. "Investigation on the applicability for reaction rates adjustment of the optimized biodiesel skeletal mechanism," Energy, Elsevier, vol. 150(C), pages 1031-1038.
    2. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Aghbashlo, Mortaza & Nizami, Abdul-Sattar & Heidrich, Oliver, 2019. "Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 276-292.
    4. Jingjing He & Hao Chen & Xin Su & Bin Xie & Quanwei Li, 2021. "Combustion Study of Polyoxymethylene Dimethyl Ethers and Diesel Blend Fuels on an Optical Engine," Energies, MDPI, vol. 14(15), pages 1-19, July.
    5. Kan, Xiang & Chen, Xiaoping & Shen, Ye & Lapkin, Alexei A. & Kraft, Markus & Wang, Chi-Hwa, 2019. "Box-Behnken design based CO2 co-gasification of horticultural waste and sewage sludge with addition of ash from waste as catalyst," Applied Energy, Elsevier, vol. 242(C), pages 1549-1561.
    6. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    7. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    9. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    10. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    11. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    12. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    13. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    14. Arunkumar, M. & Kannan, M. & Murali, G., 2019. "Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine," Renewable Energy, Elsevier, vol. 131(C), pages 737-744.
    15. Chiatti, Giancarlo & Chiavola, Ornella & Palmieri, Fulvio, 2017. "Vibration and acoustic characteristics of a city-car engine fueled with biodiesel blends," Applied Energy, Elsevier, vol. 185(P1), pages 664-670.
    16. Huang, Haozhong & Huang, Rong & Guo, Xiaoyu & Pan, Mingzhang & Teng, Wenwen & Chen, Yingjie & Li, Zhongju, 2019. "Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition," Applied Energy, Elsevier, vol. 250(C), pages 185-197.
    17. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    18. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    19. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    20. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.