IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v106y2016icp1-12.html
   My bibliography  Save this article

Partial oxidation of methanol over a Pt/Al2O3 catalyst enhanced by sprays

Author

Listed:
  • Chen, Wei-Hsin
  • Shen, Chun-Ting

Abstract

Reaction characteristics of POM (partial oxidation of methanol) over a Pt/Al2O3 catalyst are investigated in this study. Particular attention is paid to the POM performance enhanced by sprays. The influences of the O2-to-methanol molar ratio (the O2/C ratio), the catalyst bed with/without preheating, and the preheating temperature on POM are also examined. Compared to liquid methanol dropped onto the catalyst bed, atomized methanol can be uniformly dispersed on the catalyst bed when sprays are applied. Therefore, the POM performance is enhanced drastically by sprays. With increasing the O2/C ratio, POM progressively evolves into methanol combustion, and methane formation inherently changes from kinetically dominating mechanism to thermodynamically governing one. When sprays are practiced, the performance of POM under preheating is close to that under cold start, and an increase in preheating temperature intensifies the performance to a small extent. With the operation of sprays, the relative methanol conversion can be improved over 30%. Therefore, using sprays and cold start for POM over the Pt/Al2O3 catalyst is a feasible operation to produce syngas. From the perspectives of syngas production and methanol conversion, the optimum O2/C ratio for POM operation with sprays and cold start is located at 0.7.

Suggested Citation

  • Chen, Wei-Hsin & Shen, Chun-Ting, 2016. "Partial oxidation of methanol over a Pt/Al2O3 catalyst enhanced by sprays," Energy, Elsevier, vol. 106(C), pages 1-12.
  • Handle: RePEc:eee:energy:v:106:y:2016:i:c:p:1-12
    DOI: 10.1016/j.energy.2016.03.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Shen, Chun-Ting & Lin, Bo-Jhih & Liu, Shih-Chun, 2015. "Hydrogen production from methanol partial oxidation over Pt/Al2O3 catalyst with low Pt content," Energy, Elsevier, vol. 88(C), pages 399-407.
    2. Wei, Pan & Xia, Wei & Li, Jian Zhu & Long, Haifei & Chen, Jindan & Li, Ting & Fan, Meiqiang, 2015. "Single-phase Ni3Sn alloy alkali-leached for hydrogen production from methanol decomposition," Renewable Energy, Elsevier, vol. 78(C), pages 357-363.
    3. Chen, Wei-Hsin & Lin, Bo-Jhih, 2013. "Hydrogen and synthesis gas production from activated carbon and steam via reusing carbon dioxide," Applied Energy, Elsevier, vol. 101(C), pages 551-559.
    4. Chen, Wei-Hsin & Lin, Bo-Jhih & Lee, How-Ming & Huang, Men-Han, 2012. "One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity," Applied Energy, Elsevier, vol. 98(C), pages 92-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Wei-Hsin & Chen, Kuan-Hsiang & Lin, Bo-Jhih & Guo, Yu-Zhi, 2020. "Catalyst combination strategy for hydrogen production from methanol partial oxidation," Energy, Elsevier, vol. 206(C).
    2. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    3. Rodríguez-Pastor, D.A. & Carvajal, E. & Becerra, J.A. & Soltero, V.M. & Chacartegui, R., 2024. "Methanol-based thermochemical energy storage (TCES) for district heating networks," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Hsin & Chen, Kuan-Hsiang & Lin, Bo-Jhih & Guo, Yu-Zhi, 2020. "Catalyst combination strategy for hydrogen production from methanol partial oxidation," Energy, Elsevier, vol. 206(C).
    2. Chen, Wei-Hsin & Hsu, Chih-Liang & Wang, Xiao-Dong, 2016. "Thermodynamic approach and comparison of two-step and single step DME (dimethyl ether) syntheses with carbon dioxide utilization," Energy, Elsevier, vol. 109(C), pages 326-340.
    3. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    4. Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
    5. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    6. Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.
    7. Loghmani, Mohammad Hassan & Shojaei, Abdollah Fallah & Khakzad, Morteza, 2017. "Hydrogen generation as a clean energy through hydrolysis of sodium borohydride over Cu-Fe-B nano powders: Effect of polymers and surfactants," Energy, Elsevier, vol. 126(C), pages 830-840.
    8. Janusz Zdeb & Natalia Howaniec & Adam Smoliński, 2019. "Utilization of Carbon Dioxide in Coal Gasification—An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-12, January.
    9. Chen, Wei-Hsin & Lin, Shih-Cheng, 2016. "Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery," Applied Energy, Elsevier, vol. 162(C), pages 1141-1152.
    10. Chen, Wei-Hsin & Lin, Shih-Cheng, 2015. "Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation," Energy, Elsevier, vol. 82(C), pages 206-217.
    11. Wang, Yuqing & Zeng, Hongyu & Shi, Yixiang & Cao, Tianyu & Cai, Ningsheng & Ye, Xiaofeng & Wang, Shaorong, 2016. "Power and heat co-generation by micro-tubular flame fuel cell on a porous media burner," Energy, Elsevier, vol. 109(C), pages 117-123.
    12. Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
    13. Enbin Liu & Xudong Lu & Daocheng Wang, 2023. "A Systematic Review of Carbon Capture, Utilization and Storage: Status, Progress and Challenges," Energies, MDPI, vol. 16(6), pages 1-48, March.
    14. Zuo, Hongmei & Mao, Dongsen & Guo, Xiaoming & Yu, Jun, 2018. "Highly efficient synthesis of dimethyl ether directly from biomass-derived gas over Li-modified Cu-ZnO-Al2O3/HZSM-5 hybrid catalyst," Renewable Energy, Elsevier, vol. 116(PA), pages 38-47.
    15. Chen, Wei-Hsin & Guo, Yu-Zhi & Chen, Chih-Chun, 2018. "Methanol partial oxidation accompanied by heat recirculation in a Swiss-roll reactor," Applied Energy, Elsevier, vol. 232(C), pages 79-88.
    16. Prabowo, Bayu & Umeki, Kentaro & Yan, Mi & Nakamura, Masato R. & Castaldi, Marco J. & Yoshikawa, Kunio, 2014. "CO2–steam mixture for direct and indirect gasification of rice straw in a downdraft gasifier: Laboratory-scale experiments and performance prediction," Applied Energy, Elsevier, vol. 113(C), pages 670-679.
    17. Bakhtyari, Ali & Bardool, Roghayeh & Rahimpour, Mohammad Reza & Iulianelli, Adolfo, 2021. "Dehydration of bio-alcohols in an enhanced membrane-assisted reactor: A rigorous sensitivity analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 177(C), pages 519-543.
    18. Chen, Wei-Hsin & Escalante, Jamin, 2020. "Influence of vacuum degree on hydrogen permeation through a Pd membrane in different H2/N2 gas mixtures," Renewable Energy, Elsevier, vol. 155(C), pages 1245-1263.
    19. Sun, Zhao & Chen, Shiyi & Russell, Christopher K. & Hu, Jun & Rony, Asif H. & Tan, Gang & Chen, Aimin & Duan, Lunbo & Boman, John & Tang, Jinke & Chien, TeYu & Fan, Maohong & Xiang, Wenguo, 2018. "Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of inner-looping redox reaction and promoting mechanisms," Applied Energy, Elsevier, vol. 212(C), pages 931-943.
    20. Joanna Sobczak & Izabela Wysocka & Stanisław Murgrabia & Andrzej Rogala, 2022. "A Review on Deactivation and Regeneration of Catalysts for Dimethyl Ether Synthesis," Energies, MDPI, vol. 15(15), pages 1-39, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:106:y:2016:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.