IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v115y2012i1p59-88.html
   My bibliography  Save this article

Variability and change in the Canadian cryosphere

Author

Listed:
  • C. Derksen
  • S. Smith
  • M. Sharp
  • L. Brown
  • S. Howell
  • L. Copland
  • D. Mueller
  • Y. Gauthier
  • C. Fletcher
  • A. Tivy
  • M. Bernier
  • J. Bourgeois
  • R. Brown
  • C. Burn
  • C. Duguay
  • P. Kushner
  • A. Langlois
  • A. Lewkowicz
  • A. Royer
  • A. Walker

Abstract

During the International Polar Year (IPY), comprehensive observational research programs were undertaken to increase our understanding of the Canadian polar cryosphere response to a changing climate. Cryospheric components considered were snow, permafrost, sea ice, freshwater ice, glaciers and ice shelves. Enhancement of conventional observing systems and retrieval algorithms for satellite measurements facilitated development of a snapshot of current cryospheric conditions, providing a baseline against which future change can be assessed. Key findings include: 1. surface air temperatures across the Canadian Arctic exhibit a warming trend in all seasons over the past 40 years. A consistent pan-cryospheric response to these warming temperatures is evident through the analysis of multi-decadal datasets; 2. in recent years (including the IPY period) a higher rate of change was observed compared to previous decades including warming permafrost, reduction in snow cover extent and duration, reduction in summer sea ice extent, increased mass loss from glaciers, and thinning and break-up of the remaining Canadian ice shelves. These changes illustrate both a reduction in the spatial extent and mass of the cryosphere and an increase in the temporal persistence of melt related parameters. The observed changes in the cryosphere have important implications for human activity including the close ties of northerners to the land, access to northern regions for natural resource development, and the integrity of northern infrastructure. Copyright UKCrown: Environment Canada; © Her Majesty the Queen in Right of Canada 2012

Suggested Citation

  • C. Derksen & S. Smith & M. Sharp & L. Brown & S. Howell & L. Copland & D. Mueller & Y. Gauthier & C. Fletcher & A. Tivy & M. Bernier & J. Bourgeois & R. Brown & C. Burn & C. Duguay & P. Kushner & A. L, 2012. "Variability and change in the Canadian cryosphere," Climatic Change, Springer, vol. 115(1), pages 59-88, November.
  • Handle: RePEc:spr:climat:v:115:y:2012:i:1:p:59-88
    DOI: 10.1007/s10584-012-0470-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0470-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0470-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. R. Burn & S. V. Kokelj, 2009. "The environment and permafrost of the Mackenzie Delta area," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 20(2), pages 83-105, April.
    2. Vladimir E. Romanovsky & Sharon L. Smith & Hanne H. Christiansen, 2010. "Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 21(2), pages 106-116, April.
    3. Simon Thibault & Serge Payette, 2009. "Recent permafrost degradation in bogs of the James Bay area, northern Quebec, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 20(4), pages 383-389, October.
    4. T. P. Barnett & J. C. Adam & D. P. Lettenmaier, 2005. "Potential impacts of a warming climate on water availability in snow-dominated regions," Nature, Nature, vol. 438(7066), pages 303-309, November.
    5. Antoni G. Lewkowicz & Philip P. Bonnaventure, 2011. "Equivalent Elevation: A New Method to Incorporate Variable Surface Lapse Rates into Mountain Permafrost Modelling," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 22(2), pages 153-162, April.
    6. Alex S. Gardner & Geir Moholdt & Bert Wouters & Gabriel J. Wolken & David O. Burgess & Martin J. Sharp & J. Graham Cogley & Carsten Braun & Claude Labine, 2011. "Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago," Nature, Nature, vol. 473(7347), pages 357-360, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Larissa Pizzolato & Stephen Howell & Chris Derksen & Jackie Dawson & Luke Copland, 2014. "Changing sea ice conditions and marine transportation activity in Canadian Arctic waters between 1990 and 2012," Climatic Change, Springer, vol. 123(2), pages 161-173, March.
    2. Xuewei Fang & Yihui Chen & Chen Cheng & Zhibang Wang & Shihua Lyu & Klaus Fraedrich, 2023. "Changes of timing and duration of the ground surface freeze on the Tibetan Plateau in the highly wetting period from 1998 to 2021," Climatic Change, Springer, vol. 176(5), pages 1-16, May.
    3. Visbeck, Martin & Kronfeld-Goharani, Ulrike & Neumann, Barbara & Rickels, Wilfried & Schmidt, Jörn & van Doorn, Erik & Matz-Lück, Nele & Ott, Konrad & Quaas, Martin F., 2014. "Securing blue wealth: The need for a special sustainable development goal for the ocean and coasts," Marine Policy, Elsevier, vol. 48(C), pages 184-191.
    4. Visbeck, Martin & Kronfeld-Goharani, Ulrike & Neumann, Barbara & Rickels, Wilfried & Schmidt, Jörn & van Doorn, Erik, 2013. "Establishing a sustainable development goal for oceans and coasts to face the challenges of our future ocean," Kiel Working Papers 1847, Kiel Institute for the World Economy (IfW Kiel).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    2. Xiuchen Wu & Hongyan Liu & Dali Guo & Oleg A Anenkhonov & Natalya K Badmaeva & Denis V Sandanov, 2012. "Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    3. Hengzhou Xu & Chuanrong Zhang & Weidong Li & Wenjing Zhang & Hongchun Yin, 2018. "Economic growth and carbon emission in China:a spatial econometric Kuznets curve?," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 36(1), pages 11-28.
    4. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.
    5. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    7. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    8. Troy J. Bouffard & Ekaterina Uryupova & Klaus Dodds & Vladimir E. Romanovsky & Alec P. Bennett & Dmitry Streletskiy, 2021. "Scientific Cooperation: Supporting Circumpolar Permafrost Monitoring and Data Sharing," Land, MDPI, vol. 10(6), pages 1-17, June.
    9. Leiwen Jiang & Karen Hardee, 2011. "How do Recent Population Trends Matter to Climate Change?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(2), pages 287-312, April.
    10. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.
    11. Haiyan Fang & Zemeng Fan, 2021. "Impacts of climate and land use changes on water and sediment yields for the black soil region, northeastern China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6259-6278, April.
    12. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    13. Chen, Zi-yue & Huang, Zhen-hai & Nie, Pu-yan, 2018. "Industrial characteristics and consumption efficiency from a nexus perspective – Based on Anhui’s Empirical Statistics," Energy Policy, Elsevier, vol. 115(C), pages 281-290.
    14. R. R. McCrary & L. O. Mearns & M. R. Abel & S. Biner & M. S. Bukovsky, 2022. "Projections of North American snow from NA-CORDEX and their uncertainties, with a focus on model resolution," Climatic Change, Springer, vol. 170(3), pages 1-25, February.
    15. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    16. Xiaofeng Ren & Erwen Xu & C. Ken Smith & Michael Vrahnakis & Wenmao Jing & Weijun Zhao & Rongxin Wang & Xin Jia & Chunming Yan & Ruiming Liu, 2024. "Changes in Surface Runoff and Temporal Dispersion in a Restored Montane Watershed on the Qinghai–Tibetan Plateau," Land, MDPI, vol. 13(5), pages 1-22, April.
    17. Donna, Javier D. & Espin-Sanchez, Jose, 2018. "Are Water Markets Liquid? Evidence from Southeastern Spain," MPRA Paper 117032, University Library of Munich, Germany.
    18. Wu, Hao & Xu, Min & Peng, Zhuoyue & Chen, Xiaoping, 2022. "Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia," Agricultural Water Management, Elsevier, vol. 269(C).
    19. Shakil Ahmad Romshoo & Jasia Bashir & Irfan Rashid, 2020. "Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models," Climatic Change, Springer, vol. 162(3), pages 1473-1491, October.
    20. Muhammad Arfan & Jewell Lund & Daniyal Hassan & Maaz Saleem & Aftab Ahmad, 2019. "Assessment of Spatial and Temporal Flow Variability of the Indus River," Resources, MDPI, vol. 8(2), pages 1-17, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:115:y:2012:i:1:p:59-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.