IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221006526.html
   My bibliography  Save this article

Forecasting the U.S. oil markets based on social media information during the COVID-19 pandemic

Author

Listed:
  • Wu, Binrong
  • Wang, Lin
  • Wang, Sirui
  • Zeng, Yu-Rong

Abstract

Accurate oil market forecasting plays an important role in the theory and application of oil supply chain management for profit maximization and risk minimization. However, the coronavirus disease 2019 (COVID-19) has compelled governments worldwide to impose restrictions, consequently forcing the closure of most social and economic activities. The latter leads to the volatility of the oil markets and poses a huge challenge to oil market forecasting. Fortunately, the social media information can finely reflect oil market factors and exogenous factors, such as conflicts and political instability. Accordingly, this study collected vast online oil news and used convolutional neural network to extract relevant information automatically. Oil markets are divided into four categories: oil price, oil production, oil consumption, and oil inventory. A total of 16,794; 9,139; 8,314; and 8,548 news headlines were collected in four respective cases. Experimental results indicate that social media information contributes to the forecasting of oil price, oil production and oil consumption. The mean absolute percentage errors are respectively 0.0717, 0.0144 and 0.0168 for the oil price, production, and consumption prediction during the COVID-19 pandemic. Marketers must consider the impact of social media information on the oil or similar markets, especially during the COVID-19 outbreak.

Suggested Citation

  • Wu, Binrong & Wang, Lin & Wang, Sirui & Zeng, Yu-Rong, 2021. "Forecasting the U.S. oil markets based on social media information during the COVID-19 pandemic," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006526
    DOI: 10.1016/j.energy.2021.120403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cifarelli, Giulio & Paladino, Giovanna, 2010. "Oil price dynamics and speculation: A multivariate financial approach," Energy Economics, Elsevier, vol. 32(2), pages 363-372, March.
    2. Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
    3. Ghoddusi, Hamed & Creamer, Germán G. & Rafizadeh, Nima, 2019. "Machine learning in energy economics and finance: A review," Energy Economics, Elsevier, vol. 81(C), pages 709-727.
    4. Yu, Lean & Zhao, Yaqing & Tang, Ling & Yang, Zebin, 2019. "Online big data-driven oil consumption forecasting with Google trends," International Journal of Forecasting, Elsevier, vol. 35(1), pages 213-223.
    5. de Albuquerquemello, Vinícius Phillipe & de Medeiros, Rennan Kertlly & da Nóbrega Besarria, Cássio & Maia, Sinézio Fernandes, 2018. "Forecasting crude oil price: Does exist an optimal econometric model?," Energy, Elsevier, vol. 155(C), pages 578-591.
    6. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    7. Li, Jingmiao & Wang, Jun, 2020. "Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model," Energy, Elsevier, vol. 213(C).
    8. Sharif, Arshian & Aloui, Chaker & Yarovaya, Larisa, 2020. "COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach," International Review of Financial Analysis, Elsevier, vol. 70(C).
    9. Bekiroglu, Korkut & Duru, Okan & Gulay, Emrah & Su, Rong & Lagoa, Constantino, 2018. "Predictive analytics of crude oil prices by utilizing the intelligent model search engine," Applied Energy, Elsevier, vol. 228(C), pages 2387-2397.
    10. Santiago, I. & Moreno-Munoz, A. & Quintero-Jiménez, P. & Garcia-Torres, F. & Gonzalez-Redondo, M.J., 2021. "Electricity demand during pandemic times: The case of the COVID-19 in Spain," Energy Policy, Elsevier, vol. 148(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
    2. Kumeka, Terver Theophilus & Uzoma-Nwosu, Damian Chidozie & David-Wayas, Maria Onyinye, 2022. "The effects of COVID-19 on the interrelationship among oil prices, stock prices and exchange rates in selected oil exporting economies," Resources Policy, Elsevier, vol. 77(C).
    3. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2022. "The impact and role of COVID-19 uncertainty: A global industry analysis," International Review of Financial Analysis, Elsevier, vol. 80(C).
    4. Jiang, Zhe & Zhang, Lin & Zhang, Lingling & Wen, Bo, 2022. "Investor sentiment and machine learning: Predicting the price of China's crude oil futures market," Energy, Elsevier, vol. 247(C).
    5. Cheng, Zishu & Li, Mingchen & Sun, Yuying & Hong, Yongmiao & Wang, Shouyang, 2024. "Climate change and crude oil prices: An interval forecast model with interval-valued textual data," Energy Economics, Elsevier, vol. 134(C).
    6. Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
    7. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
    8. Fabra, Natalia & Lacuesta, Aitor & Souza, Mateus, 2022. "The implicit cost of carbon abatement during the COVID-19 pandemic," European Economic Review, Elsevier, vol. 147(C).
    9. Kertlly de Medeiros, Rennan & da Nóbrega Besarria, Cássio & Pitta de Jesus, Diego & Phillipe de Albuquerquemello, Vinicius, 2022. "Forecasting oil prices: New approaches," Energy, Elsevier, vol. 238(PC).
    10. Bouteska, Ahmed & Hajek, Petr & Fisher, Ben & Abedin, Mohammad Zoynul, 2023. "Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network," Research in International Business and Finance, Elsevier, vol. 64(C).
    11. Zhao, Lu-Tao & Zheng, Zhi-Yi & Wei, Yi-Ming, 2023. "Forecasting oil inventory changes with Google trends: A hybrid wavelet decomposer and ARDL-SVR ensemble model," Energy Economics, Elsevier, vol. 120(C).
    12. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    13. Canepa, Alessandra & Zanetti Chini, Emilio & Alqaralleh, Huthaifa, 2023. "Modelling and Forecasting Energy Market Cycles: A Generalized Smooth Transition Approach," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202318, University of Turin.
    14. Jiangwei Liu & Xiaohong Huang, 2021. "Forecasting Crude Oil Price Using Event Extraction," Papers 2111.09111, arXiv.org.
    15. Meng Qin & Yu-Chen Zhang & Chi-Wei Su, 2021. "The Essential Role of Pandemics - A Fresh Insight Into the Oil Market," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 1(1), pages 1-4.
    16. Marcus Vinicius Santos & Fernando Morgado-Dias & Thiago C. Silva, 2023. "Oil Sector and Sentiment Analysis—A Review," Energies, MDPI, vol. 16(12), pages 1-29, June.
    17. Li, Ranran & Hu, Yucai & Heng, Jiani & Chen, Xueli, 2021. "A novel multiscale forecasting model for crude oil price time series," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    18. Lin, Boqiang & Su, Tong, 2021. "Do China's macro-financial factors determine the Shanghai crude oil futures market?," International Review of Financial Analysis, Elsevier, vol. 78(C).
    19. Manickavasagam, Jeevananthan & Visalakshmi, S. & Apergis, Nicholas, 2020. "A novel hybrid approach to forecast crude oil futures using intraday data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    20. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.