Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
- Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
- Dmitry Ivanov & Alexander Tsipoulanidis & Jörn Schönberger, 2017. "Erratum to: Global Supply Chain and Operations Management," Springer Texts in Business and Economics, in: Global Supply Chain and Operations Management, pages E1-E1, Springer.
- Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
- Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
- Ahmad, Tanveer & Chen, Huanxin & Huang, Ronggeng & Yabin, Guo & Wang, Jiangyu & Shair, Jan & Azeem Akram, Hafiz Muhammad & Hassnain Mohsan, Syed Agha & Kazim, Muhammad, 2018. "Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment," Energy, Elsevier, vol. 158(C), pages 17-32.
- Hamid Nasiri & Mohammad Mehdi Ebadzadeh, 2022. "Multi-step-ahead Stock Price Prediction Using Recurrent Fuzzy Neural Network and Variational Mode Decomposition," Papers 2212.14687, arXiv.org.
- Dmitry Ivanov & Alexander Tsipoulanidis & Jörn Schönberger, 2017. "Global Supply Chain and Operations Management," Springer Texts in Business and Economics, Springer, number 978-3-319-24217-0, April.
- Alobaidi, Mohammad H. & Chebana, Fateh & Meguid, Mohamed A., 2018. "Robust ensemble learning framework for day-ahead forecasting of household based energy consumption," Applied Energy, Elsevier, vol. 212(C), pages 997-1012.
- Arora, Siddharth & Taylor, James W., 2018. "Rule-based autoregressive moving average models for forecasting load on special days: A case study for France," European Journal of Operational Research, Elsevier, vol. 266(1), pages 259-268.
- He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
- Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco & Aguado, José A., 2023. "An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster," Applied Energy, Elsevier, vol. 333(C).
- Lindberg, K.B. & Seljom, P. & Madsen, H. & Fischer, D. & Korpås, M., 2019. "Long-term electricity load forecasting: Current and future trends," Utilities Policy, Elsevier, vol. 58(C), pages 102-119.
- Fangze Zhou & Hui Zhou & Zhaoyan Li & Kai Zhao, 2022. "Multi-Step Ahead Short-Term Electricity Load Forecasting Using VMD-TCN and Error Correction Strategy," Energies, MDPI, vol. 15(15), pages 1-18, July.
- Simona-Vasilica Oprea & Adela Bâra & Florina Camelia Puican & Ioan Cosmin Radu, 2021. "Anomaly Detection with Machine Learning Algorithms and Big Data in Electricity Consumption," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
- Takeda, Hisashi & Tamura, Yoshiyasu & Sato, Seisho, 2016. "Using the ensemble Kalman filter for electricity load forecasting and analysis," Energy, Elsevier, vol. 104(C), pages 184-198.
- Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
- Fan, Cheng & Wang, Jiayuan & Gang, Wenjie & Li, Shenghan, 2019. "Assessment of deep recurrent neural network-based strategies for short-term building energy predictions," Applied Energy, Elsevier, vol. 236(C), pages 700-710.
- Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
- Wang, Zeyu & Srinivasan, Ravi S., 2017. "A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 796-808.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
- Xinjian Xiang & Tianshun Yuan & Guangke Cao & Yongping Zheng, 2024. "Short-Term Electric Load Forecasting Based on Signal Decomposition and Improved TCN Algorithm," Energies, MDPI, vol. 17(8), pages 1-21, April.
- Aydin Zaboli & Swetha Rani Kasimalla & Kuchan Park & Younggi Hong & Junho Hong, 2024. "A Comprehensive Review of Behind-the-Meter Distributed Energy Resources Load Forecasting: Models, Challenges, and Emerging Technologies," Energies, MDPI, vol. 17(11), pages 1-27, May.
- Zhuoqun Zou & Jing Wang & Ning E & Can Zhang & Zhaocai Wang & Enyu Jiang, 2023. "Short-Term Power Load Forecasting: An Integrated Approach Utilizing Variational Mode Decomposition and TCN–BiGRU," Energies, MDPI, vol. 16(18), pages 1-17, September.
- Serrano-Arévalo, Tania Itzel & López-Flores, Francisco Javier & Raya-Tapia, Alma Yunuen & Ramírez-Márquez, César & Ponce-Ortega, José María, 2023. "Optimal expansion for a clean power sector transition in Mexico based on predicted electricity demand using deep learning scheme," Applied Energy, Elsevier, vol. 348(C).
- Serdal Atiç & Ercan Izgi, 2024. "Smart Reserve Planning Using Machine Learning Methods in Power Systems with Renewable Energy Sources," Sustainability, MDPI, vol. 16(12), pages 1-21, June.
- Tulin Guzel & Hakan Cinar & Mehmet Nabi Cenet & Kamil Doruk Oguz & Ahmet Yucekaya & Mustafa Hekimoglu, 2023. "A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 179-193, September.
- George Kandilogiannakis & Paris Mastorocostas & Athanasios Voulodimos & Constantinos Hilas, 2023. "Short-Term Load Forecasting of the Greek Power System Using a Dynamic Block-Diagonal Fuzzy Neural Network," Energies, MDPI, vol. 16(10), pages 1-20, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
- Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
- Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
- Zheng, Peijun & Zhou, Heng & Liu, Jiang & Nakanishi, Yosuke, 2023. "Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture," Applied Energy, Elsevier, vol. 349(C).
- Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
- Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
- Jiang, Ben & Li, Yu & Rezgui, Yacine & Zhang, Chengyu & Wang, Peng & Zhao, Tianyi, 2024. "Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings," Energy, Elsevier, vol. 299(C).
- Guillaume Guerard & Hugo Pousseur & Ihab Taleb, 2021. "Isolated Areas Consumption Short-Term Forecasting Method," Energies, MDPI, vol. 14(23), pages 1-23, November.
- Chakraborty, Debaditya & Alam, Arafat & Chaudhuri, Saptarshi & Başağaoğlu, Hakan & Sulbaran, Tulio & Langar, Sandeep, 2021. "Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence," Applied Energy, Elsevier, vol. 291(C).
- Hu, Jingfan & Zheng, Wandong & Zhang, Sirui & Li, Hao & Liu, Zijian & Zhang, Guo & Yang, Xu, 2021. "Thermal load prediction and operation optimization of office building with a zone-level artificial neural network and rule-based control," Applied Energy, Elsevier, vol. 300(C).
- Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
- Zou, Rongwei & Yang, Qiliang & Xing, Jianchun & Zhou, Qizhen & Xie, Liqiang & Chen, Wenjie, 2024. "Predicting the electric power consumption of office buildings based on dynamic and static hybrid data analysis," Energy, Elsevier, vol. 290(C).
- Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
- Behm, Christian & Nolting, Lars & Praktiknjo, Aaron, 2020. "How to model European electricity load profiles using artificial neural networks," Applied Energy, Elsevier, vol. 277(C).
- Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
- Kamel, Ehsan & Sheikh, Shaya & Huang, Xueqing, 2020. "Data-driven predictive models for residential building energy use based on the segregation of heating and cooling days," Energy, Elsevier, vol. 206(C).
- Fan, Cheng & Xiao, Fu & Song, Mengjie & Wang, Jiayuan, 2019. "A graph mining-based methodology for discovering and visualizing high-level knowledge for building energy management," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Jeong, Dongyeon & Park, Chiwoo & Ko, Young Myoung, 2021. "Short-term electric load forecasting for buildings using logistic mixture vector autoregressive model with curve registration," Applied Energy, Elsevier, vol. 282(PB).
More about this item
Keywords
load forecasting; machine learning; deep learning models; electric power system; short-term load forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2283-:d:1082006. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.