IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5832-d635922.html
   My bibliography  Save this article

Evaluation Method for Winding Performance of Distribution Transformer

Author

Listed:
  • Chunguang Suo

    (College of Science, Kunming University of Science and Technology, Kunming 650504, China)

  • Yanan Ren

    (College of Science, Kunming University of Science and Technology, Kunming 650504, China)

  • Wenbin Zhang

    (College of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650504, China)

  • Yincheng Li

    (College of Science, Kunming University of Science and Technology, Kunming 650504, China)

  • Yanyun Wang

    (College of Science, Kunming University of Science and Technology, Kunming 650504, China)

  • Yi Ke

    (College of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650504, China)

Abstract

In order to ensure the safe and stable operation of a power system, the performance evaluation of transformer windings after a short-circuit test can predict whether the windings are deformed in order to provide a useful reference for the operation and maintenance of the power sector. This paper proposes a method for evaluating the performance of transformer windings in order to improve the overall effectiveness of a winding evaluation. The index data obtained based on a short-circuit impedance method, frequency response method, and oscillation wave method are used in the algorithm proposed in this paper. First, the transformer winding performance evaluation index system is constructed. Second, the weight of each index is determined by analytic hierarchy process, and then the fuzzy comprehensive assessment method is introduced, and the fuzzy evaluation matrix is established, the evaluation results are calculated using the evaluation formula. Finally, the maximum membership principle is used to determine the performance level of the transformer winding on the evaluation results, and the evaluation results of the transformer winding state are obtained. The example shows that the evaluation level of the measured transformer winding performance can be obtained by this method as “good”. Compared with the traditional method, this method can simplify the evaluation while maintaining higher accuracy.

Suggested Citation

  • Chunguang Suo & Yanan Ren & Wenbin Zhang & Yincheng Li & Yanyun Wang & Yi Ke, 2021. "Evaluation Method for Winding Performance of Distribution Transformer," Energies, MDPI, vol. 14(18), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5832-:d:635922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5832/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5832/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Tenbohlen & Sebastian Coenen & Mohammad Djamali & Andreas Müller & Mohammad Hamed Samimi & Martin Siegel, 2016. "Diagnostic Measurements for Power Transformers," Energies, MDPI, vol. 9(5), pages 1-25, May.
    2. Szymon Banaszak & Wojciech Szoka, 2018. "Cross Test Comparison in Transformer Windings Frequency Response Analysis," Energies, MDPI, vol. 11(6), pages 1-12, May.
    3. Ziwei Zhang & Wensheng Gao & Tusongjiang Kari & Huan Lin, 2018. "Identification of Power Transformer Winding Fault Types by a Hierarchical Dimension Reduction Classifier," Energies, MDPI, vol. 11(9), pages 1-19, September.
    4. Szymon Banaszak & Konstanty Marek Gawrylczyk & Katarzyna Trela, 2020. "Frequency Response Modelling of Transformer Windings Connected in Parallel," Energies, MDPI, vol. 13(6), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Kuniewski, 2020. "FRA Diagnostics Measurement of Winding Deformation in Model Single-Phase Transformers Made with Silicon-Steel, Amorphous and Nanocrystalline Magnetic Cores," Energies, MDPI, vol. 13(10), pages 1-23, May.
    2. Song Wang & Shuang Wang & Ying Cui & Jie Long & Fuqiang Ren & Shengchang Ji & Shuhong Wang, 2020. "An Experimental Study of the Sweep Frequency Impedance Method on the Winding Deformation of an Onsite Power Transformer," Energies, MDPI, vol. 13(14), pages 1-13, July.
    3. Tomasz Piotrowski & Pawel Rozga & Ryszard Kozak, 2019. "Comparative Analysis of the Results of Diagnostic Measurements with an Internal Inspection of Oil-Filled Power Transformers," Energies, MDPI, vol. 12(11), pages 1-18, June.
    4. Konstanty M. Gawrylczyk & Szymon Banaszak, 2021. "Recent Developments in the Modelling of Transformer Windings," Energies, MDPI, vol. 14(10), pages 1-22, May.
    5. Mehran Tahir & Stefan Tenbohlen, 2019. "A Comprehensive Analysis of Windings Electrical and Mechanical Faults Using a High-Frequency Model," Energies, MDPI, vol. 13(1), pages 1-25, December.
    6. Lefeng Cheng & Tao Yu & Guoping Wang & Bo Yang & Lv Zhou, 2018. "Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study," Energies, MDPI, vol. 11(1), pages 1-26, January.
    7. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    8. Yulong Wang & Xiaohong Zhang & Lili Li & Jinyang Du & Junguo Gao, 2019. "Design of Partial Discharge Test Environment for Oil-Filled Submarine Cable Terminals and Ultrasonic Monitoring," Energies, MDPI, vol. 12(24), pages 1-14, December.
    9. Szymon Banaszak & Konstanty Marek Gawrylczyk & Katarzyna Trela, 2020. "Frequency Response Modelling of Transformer Windings Connected in Parallel," Energies, MDPI, vol. 13(6), pages 1-13, March.
    10. Szymon Banaszak & Wojciech Szoka, 2018. "Cross Test Comparison in Transformer Windings Frequency Response Analysis," Energies, MDPI, vol. 11(6), pages 1-12, May.
    11. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    12. Patryk Bohatyrewicz & Szymon Banaszak, 2022. "Assessment Criteria of Changes in Health Index Values over Time—A Transformer Population Study," Energies, MDPI, vol. 15(16), pages 1-15, August.
    13. Alexandra I. Khalyasmaa & Pavel V. Matrenin & Stanislav A. Eroshenko & Vadim Z. Manusov & Andrey M. Bramm & Alexey M. Romanov, 2022. "Data Mining Applied to Decision Support Systems for Power Transformers’ Health Diagnostics," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    14. Mehran Tahir & Stefan Tenbohlen, 2021. "Transformer Winding Condition Assessment Using Feedforward Artificial Neural Network and Frequency Response Measurements," Energies, MDPI, vol. 14(11), pages 1-25, May.
    15. Satoru Miyazaki, 2021. "Detection of Winding Axial Displacement of a Real Transformer by Frequency Response Analysis without Fingerprint Data," Energies, MDPI, vol. 15(1), pages 1-14, December.
    16. Ruohan Gong & Jiangjun Ruan & Jingzhou Chen & Yu Quan & Jian Wang & Cihan Duan, 2017. "Analysis and Experiment of Hot-Spot Temperature Rise of 110 kV Three-Phase Three-Limb Transformer," Energies, MDPI, vol. 10(8), pages 1-12, July.
    17. Feng Yang & Lin Du & Lijun Yang & Chao Wei & Youyuan Wang & Liman Ran & Peng He, 2018. "A Parameterization Approach for the Dielectric Response Model of Oil Paper Insulation Using FDS Measurements," Energies, MDPI, vol. 11(3), pages 1-17, March.
    18. Álvaro Jaramillo-Duque & Nicolás Muñoz-Galeano & José R. Ortiz-Castrillón & Jesús M. López-Lezama & Ricardo Albarracín-Sánchez, 2018. "Power Loss Minimization for Transformers Connected in Parallel with Taps Based on Power Chargeability Balance," Energies, MDPI, vol. 11(2), pages 1-12, February.
    19. Marek Florkowski & Jakub Furgał & Maciej Kuniewski, 2020. "Propagation of Overvoltages in the Form of Impulse, Chopped and Oscillating Waveforms in Transformer Windings—Time and Frequency Domain Approach," Energies, MDPI, vol. 13(2), pages 1-16, January.
    20. Ziwei Zhang & Wensheng Gao & Tusongjiang Kari & Huan Lin, 2018. "Identification of Power Transformer Winding Fault Types by a Hierarchical Dimension Reduction Classifier," Energies, MDPI, vol. 11(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5832-:d:635922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.