IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1572-d754394.html
   My bibliography  Save this article

Enhancement of the Technique for Calculation and Assessment of the Condition of Major Insulation of Power Transformers

Author

Listed:
  • Olga Melnikova

    (Department of High-Voltage Electric Power Engineering, Electrical Engineering and Electrophysics, Ivanovo State Power Engineering University, 153003 Ivanovo, Russia)

  • Alexandr Nazarychev

    (Department of Electric Power Engineering and Electromechanics, Saint Petersburg Mining University, 199106 St. Petersburg, Russia)

  • Konstantin Suslov

    (Department of Power Supply and Electrical Engineering, Irkutsk National Research Technical University, 664074 Irkutsk, Russia)

Abstract

The findings of the analysis of data on the accident rate of power transformers indicate that one of the main causes of their failures is a decrease in the dielectric strength of the insulation. To reduce failures and extend the service life of power transformers in operation, the issue of enhancing the techniques for assessing the condition of their internal insulation becomes relevant. Currently, when selecting the major insulation of transformers, one takes into account the dependency of the dielectric strength of the oil passage on its width. Experts discuss the issues involved in the choice of major insulation while taking into account the effect of the generalized factor being the volume of the oil passage. The solution to that problem largely depends on the study of the statistical characteristics of the dielectric strength of oil passages of different volumes and the effect rated parameters of transformers have on them. The efficiency of the application of such diagnostic characteristics depends on the extent of studies available on them and the establishment of their standardized parameters. The paper proposes a method for estimating the change in the transformer oil volume in stressed oil passages of major insulation of high-voltage power transformers and statistical characteristics of the dielectric strength of these passages while taking into account the effect of the rated values of capacity and voltage of transformers. It is shown that the degree of effect of transformer technical parameters on the statistical characteristics of the dielectric strength of oil passages depends on the quality of transformer oil, which undergoes a change in operating conditions.

Suggested Citation

  • Olga Melnikova & Alexandr Nazarychev & Konstantin Suslov, 2022. "Enhancement of the Technique for Calculation and Assessment of the Condition of Major Insulation of Power Transformers," Energies, MDPI, vol. 15(4), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1572-:d:754394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1572/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1572/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Faria, Haroldo & Costa, João Gabriel Spir & Olivas, Jose Luis Mejia, 2015. "A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 201-209.
    2. Azmi, A. & Jasni, J. & Azis, N. & Kadir, M.Z.A. Ab., 2017. "Evolution of transformer health index in the form of mathematical equation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 687-700.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Insu Kim & Beopsoo Kim & Denis Sidorov, 2022. "Machine Learning for Energy Systems Optimization," Energies, MDPI, vol. 15(11), pages 1-8, June.
    2. Alexander S. Karandaev & Igor M. Yachikov & Andrey A. Radionov & Ivan V. Liubimov & Nikolay N. Druzhinin & Ekaterina A. Khramshina, 2022. "Fuzzy Algorithms for Diagnosis of Furnace Transformer Insulation Condition," Energies, MDPI, vol. 15(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Bustamante & Mario Manana & Alberto Arroyo & Raquel Martinez & Alberto Laso, 2020. "A Methodology for the Calculation of Typical Gas Concentration Values and Sampling Intervals in the Power Transformers of a Distribution System Operator," Energies, MDPI, vol. 13(22), pages 1-18, November.
    2. Bustamante, Sergio & Manana, Mario & Arroyo, Alberto & Laso, Alberto & Martinez, Raquel, 2024. "Evolution of graphical methods for the identification of insulation faults in oil-immersed power transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Peters, Lennart & Madlener, Reinhard, 2017. "Economic evaluation of maintenance strategies for ground-mounted solar photovoltaic plants," Applied Energy, Elsevier, vol. 199(C), pages 264-280.
    4. Max Gabriel Steiner & Anderson Diogo Spacek & João Mota Neto & Pedro Rodrigo Silva Moura & Oswaldo Hideo Ando Junior & Cleber Lourenço Izidoro & Luciano Dagostin Bilessimo & Jefferson Diogo Spacek, 2020. "“In Situ” Evaluation of Mechanical Wear of Mobile Contacts of Electricity Voltage Regulator," Energies, MDPI, vol. 13(19), pages 1-17, September.
    5. Zhi-Jun Li & Wei-Gen Chen & Jie Shan & Zhi-Yong Yang & Ling-Yan Cao, 2022. "Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis," Energies, MDPI, vol. 15(9), pages 1-22, April.
    6. David L. Alvarez & Diego F. Rodriguez & Alben Cardenas & F. Faria da Silva & Claus Leth Bak & Rodolfo García & Sergio Rivera, 2021. "Optimal Decision Making in Electrical Systems Using an Asset Risk Management Framework," Energies, MDPI, vol. 14(16), pages 1-25, August.
    7. Raji Murugan & Ramasamy Raju, 2021. "Evaluation of in-service power transformer health condition for Inspection, Repair, and Replacement (IRR) maintenance planning in electric utilities," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(2), pages 318-336, April.
    8. Xiaojun Tang & Wenjing Wang & Xuliang Zhang & Erzhen Wang & Xuanjiannan Li, 2018. "On-Line Analysis of Oil-Dissolved Gas in Power Transformers Using Fourier Transform Infrared Spectrometry," Energies, MDPI, vol. 11(11), pages 1-15, November.
    9. Bing Zeng & Jiang Guo & Fangqing Zhang & Wenqiang Zhu & Zhihuai Xiao & Sixu Huang & Peng Fan, 2020. "Prediction Model for Dissolved Gas Concentration in Transformer Oil Based on Modified Grey Wolf Optimizer and LSSVM with Grey Relational Analysis and Empirical Mode Decomposition," Energies, MDPI, vol. 13(2), pages 1-20, January.
    10. Christian Gianoglio & Edoardo Ragusa & Andrea Bruzzone & Paolo Gastaldo & Rodolfo Zunino & Francesco Guastavino, 2020. "Unsupervised Monitoring System for Predictive Maintenance of High Voltage Apparatus," Energies, MDPI, vol. 13(5), pages 1-16, March.
    11. Qu, Guanghao & Li, Shengtao, 2023. "Atomic mechanisms of long-term pyrolysis and gas production in cellulose-oil composite for transformer insulation," Applied Energy, Elsevier, vol. 350(C).
    12. Wani, Shufali Ashraf & Rana, Ankur Singh & Sohail, Shiraz & Rahman, Obaidur & Parveen, Shaheen & Khan, Shakeb A., 2021. "Advances in DGA based condition monitoring of transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Hamid Mirshekali & Athila Q. Santos & Hamid Reza Shaker, 2023. "A Survey of Time-Series Prediction for Digitally Enabled Maintenance of Electrical Grids," Energies, MDPI, vol. 16(17), pages 1-29, August.
    14. Muhammad Sharil Yahaya & Norhafiz Azis & Amran Mohd Selva & Mohd Zainal Abidin Ab Kadir & Jasronita Jasni & Mohd Hendra Hairi & Young Zaidey Yang Ghazali & Mohd Aizam Talib, 2018. "Effect of Pre-Determined Maintenance Repair Rates on the Health Index State Distribution and Performance Condition Curve Based on the Markov Prediction Model for Sustainable Transformers Asset Managem," Sustainability, MDPI, vol. 10(10), pages 1-13, September.
    15. Manito, Alex R.A. & Pinto, Aimé & Zilles, Roberto, 2016. "Evaluation of utility transformers' lifespan with different levels of grid-connected photovoltaic systems penetration," Renewable Energy, Elsevier, vol. 96(PA), pages 700-714.
    16. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Bing Zeng & Jiang Guo & Wenqiang Zhu & Zhihuai Xiao & Fang Yuan & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based On Hybrid Grey Wolf Optimizer and LS-SVM," Energies, MDPI, vol. 12(21), pages 1-18, November.
    18. Alhaytham Alqudsi & Ayman El-Hag, 2019. "Application of Machine Learning in Transformer Health Index Prediction," Energies, MDPI, vol. 12(14), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1572-:d:754394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.