IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6078-d894421.html
   My bibliography  Save this article

Assessment Criteria of Changes in Health Index Values over Time—A Transformer Population Study

Author

Listed:
  • Patryk Bohatyrewicz

    (Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, 70-313 Szczecin, Poland)

  • Szymon Banaszak

    (Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, 70-313 Szczecin, Poland)

Abstract

The current use of health index algorithms is mainly limited to single assessments of the unit’s condition or the device comparison. The paper focuses on the changes in the health index values between the consecutive analyses. The algorithm used for this purpose was previously developed by the authors. The test group included 359 complete oil evaluation results from 86 power transformers monitored over several years. For each outcome, the influence of the sub-components of the main score was calculated. Additional health index increase simulations were performed based on the IEC 60599 standard guidelines. The highest increases and decreases in the total score were listed and analyzed to determine the main factors behind the changes. The study has shown that the changes in dissolved gases concentrations have a much more significant influence on the health index values than the changes in physicochemical properties of the oil and furfural content. Based on the magnitude of the observed changes and the simulation outcomes, the authors have proposed two assessment thresholds—the 50th percentile health index increase within a population as an alarm zone, and the 90th or 95th percentile increase as a pre-failure zone.

Suggested Citation

  • Patryk Bohatyrewicz & Szymon Banaszak, 2022. "Assessment Criteria of Changes in Health Index Values over Time—A Transformer Population Study," Energies, MDPI, vol. 15(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6078-:d:894421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6078/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6078/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Tenbohlen & Sebastian Coenen & Mohammad Djamali & Andreas Müller & Mohammad Hamed Samimi & Martin Siegel, 2016. "Diagnostic Measurements for Power Transformers," Energies, MDPI, vol. 9(5), pages 1-25, May.
    2. Patryk Bohatyrewicz & Andrzej Mrozik, 2021. "The Analysis of Power Transformer Population Working in Different Operating Conditions with the Use of Health Index," Energies, MDPI, vol. 14(16), pages 1-14, August.
    3. David L. Alvarez & Diego F. Rodriguez & Alben Cardenas & F. Faria da Silva & Claus Leth Bak & Rodolfo García & Sergio Rivera, 2021. "Optimal Decision Making in Electrical Systems Using an Asset Risk Management Framework," Energies, MDPI, vol. 14(16), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander S. Karandaev & Igor M. Yachikov & Andrey A. Radionov & Ivan V. Liubimov & Nikolay N. Druzhinin & Ekaterina A. Khramshina, 2022. "Fuzzy Algorithms for Diagnosis of Furnace Transformer Insulation Condition," Energies, MDPI, vol. 15(10), pages 1-21, May.
    2. Yulong Wang & Xiaohong Zhang & Lili Li & Jinyang Du & Junguo Gao, 2019. "Design of Partial Discharge Test Environment for Oil-Filled Submarine Cable Terminals and Ultrasonic Monitoring," Energies, MDPI, vol. 12(24), pages 1-14, December.
    3. Szymon Banaszak & Konstanty Marek Gawrylczyk & Katarzyna Trela, 2020. "Frequency Response Modelling of Transformer Windings Connected in Parallel," Energies, MDPI, vol. 13(6), pages 1-13, March.
    4. Alexandra I. Khalyasmaa & Pavel V. Matrenin & Stanislav A. Eroshenko & Vadim Z. Manusov & Andrey M. Bramm & Alexey M. Romanov, 2022. "Data Mining Applied to Decision Support Systems for Power Transformers’ Health Diagnostics," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    5. Georgi Ivanov & Anelia Spasova & Valentin Mateev & Iliana Marinova, 2023. "Applied Complex Diagnostics and Monitoring of Special Power Transformers," Energies, MDPI, vol. 16(5), pages 1-24, February.
    6. Mehran Tahir & Stefan Tenbohlen, 2021. "Transformer Winding Condition Assessment Using Feedforward Artificial Neural Network and Frequency Response Measurements," Energies, MDPI, vol. 14(11), pages 1-25, May.
    7. Wojciech Ćwięk & Andrzej Jaki & Łukasz Popławski & Tomasz Rojek, 2023. "Value-Creation Efficiency as a Decision-Making Basis and Its Assessment in the Financial Management of Energy Companies: Evidence from the Polish Capital Market," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    8. Álvaro Jaramillo-Duque & Nicolás Muñoz-Galeano & José R. Ortiz-Castrillón & Jesús M. López-Lezama & Ricardo Albarracín-Sánchez, 2018. "Power Loss Minimization for Transformers Connected in Parallel with Taps Based on Power Chargeability Balance," Energies, MDPI, vol. 11(2), pages 1-12, February.
    9. Christian Gianoglio & Edoardo Ragusa & Paolo Gastaldo & Federico Gallesi & Francesco Guastavino, 2021. "Online Predictive Maintenance Monitoring Adopting Convolutional Neural Networks," Energies, MDPI, vol. 14(15), pages 1-23, August.
    10. Szymon Banaszak & Eugeniusz Kornatowski & Wojciech Szoka, 2021. "The Influence of the Window Width on FRA Assessment with Numerical Indices," Energies, MDPI, vol. 14(2), pages 1-18, January.
    11. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    12. Pedro J. Villegas & Juan A. Martín-Ramos & Juan Díaz & Juan Á. Martínez & Miguel J. Prieto & Alberto M. Pernía, 2017. "A Digitally Controlled Power Converter for an Electrostatic Precipitator," Energies, MDPI, vol. 10(12), pages 1-24, December.
    13. Christian Gianoglio & Edoardo Ragusa & Andrea Bruzzone & Paolo Gastaldo & Rodolfo Zunino & Francesco Guastavino, 2020. "Unsupervised Monitoring System for Predictive Maintenance of High Voltage Apparatus," Energies, MDPI, vol. 13(5), pages 1-16, March.
    14. Andrey A. Radionov & Ivan V. Liubimov & Igor M. Yachikov & Ildar R. Abdulveleev & Ekaterina A. Khramshina & Alexander S. Karandaev, 2023. "Method for Forecasting the Remaining Useful Life of a Furnace Transformer Based on Online Monitoring Data," Energies, MDPI, vol. 16(12), pages 1-27, June.
    15. Jing Wu & Kun Li & Jing Sun & Li Xie, 2018. "A Novel Integrated Method to Diagnose Faults in Power Transformers," Energies, MDPI, vol. 11(11), pages 1-8, November.
    16. Qing Yang & Peiyu Su & Yong Chen, 2017. "Comparison of Impulse Wave and Sweep Frequency Response Analysis Methods for Diagnosis of Transformer Winding Faults," Energies, MDPI, vol. 10(4), pages 1-16, March.
    17. Lei Peng & Qiang Fu & Yaohong Zhao & Yihua Qian & Tiansheng Chen & Shengping Fan, 2018. "A Non-Destructive Optical Method for the DP Measurement of Paper Insulation Based on the Free Fibers in Transformer Oil," Energies, MDPI, vol. 11(4), pages 1-9, March.
    18. Javier Leiva & Rubén Carmona Pardo & José A. Aguado, 2019. "Data Analytics-Based Multi-Objective Particle Swarm Optimization for Determination of Congestion Thresholds in LV Networks," Energies, MDPI, vol. 12(7), pages 1-20, April.
    19. Regelii Suassuna de Andrade Ferreira & Patrick Picher & Hassan Ezzaidi & Issouf Fofana, 2021. "A Machine-Learning Approach to Identify the Influence of Temperature on FRA Measurements," Energies, MDPI, vol. 14(18), pages 1-14, September.
    20. Michał Kunicki & Sebastian Borucki & Andrzej Cichoń & Jerzy Frymus, 2019. "Modeling of the Winding Hot-Spot Temperature in Power Transformers: Case Study of the Low-Loaded Fleet," Energies, MDPI, vol. 12(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6078-:d:894421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.