IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2672-d549710.html
   My bibliography  Save this article

Implementation of Distributed Autonomous Control Based Battery Energy Storage System for Frequency Regulation

Author

Listed:
  • Hyung-Seung Kim

    (OCI Power Co. Ltd., Jung-gu, Seoul 04532, Korea
    Department Electrical Engineering, Myongji University, Yongin-si 17058, Korea)

  • Junho Hong

    (Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • In-Sun Choi

    (OCI Power Co. Ltd., Jung-gu, Seoul 04532, Korea)

Abstract

It has been mandated that 5% of the generation capacity of conventional fossil fuel power plants shall be used exclusively for frequency regulation (FR) purposes in South Korea. However, the rotational speed of generators cannot be controlled quickly, and thus the variation in the power generation for FR takes some time. Even during this short period of time, frequency fluctuations may occur, and the frequency may be out of range of its reference value. In order to overcome the limitations of the existing FR method, 374 MW (103 MWh) battery energy storage systems (BESSs) for FR have been installed and are in operation at 13 sites in South Korea. When designing the capacity of BESS for FR, three key factors, i.e., the deployment time, duration of delivery, and end of delivery, are considered. When these times can be reduced, the required capacity for BESS installation can be decreased, achieving the same operational effects with minimal investment in the facilities. However, because a BESS for FR (FR BESS) needs to be installed under a large capacity, providing a single output, a centralized control method is employed. The centralized control method has the advantage of being able to view and check the entire system at once, although in the case of FR BESS, a novel system design that can optimize the above three factors through a faster and more accurate control is required. Therefore, this paper proposes the implementation of a distributed autonomous control-based BESS for frequency regulation. For the proposed FR BESS, the central control system is responsible for the determination of external factors, e.g., power generation/demand forecasting; and the system is designed such that the optimal control method of renewable energy sources and BESS according to real-time frequency variations during practical operation is determined and operated using a distributed autonomous control method. Furthermore, this study was verified through the simulation that the proposed distributed autonomous control method conducts FR faster than an FR BESS with conventional centralized control, leading to an increase in the FR success rate, and a decrease in the deployment time required (e.g., 200 ms).

Suggested Citation

  • Hyung-Seung Kim & Junho Hong & In-Sun Choi, 2021. "Implementation of Distributed Autonomous Control Based Battery Energy Storage System for Frequency Regulation," Energies, MDPI, vol. 14(9), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2672-:d:549710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2672/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2672/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Houfei Lin & Jianxin Jin & Qidai Lin & Bo Li & Chengzhi Wei & Wenfa Kang & Minyou Chen, 2019. "Distributed Settlement of Frequency Regulation Based on a Battery Energy Storage System," Energies, MDPI, vol. 12(1), pages 1-17, January.
    2. Roberto Benato & Sebastian Dambone Sessa & Maura Musio & Francesco Palone & Rosario Maria Polito, 2018. "Italian Experience on Electrical Storage Ageing for Primary Frequency Regulation," Energies, MDPI, vol. 11(8), pages 1-12, August.
    3. Sung-Min Cho & Jin-Su Kim & Jae-Chul Kim, 2019. "Optimal Operation Parameter Estimation of Energy Storage for Frequency Regulation," Energies, MDPI, vol. 12(9), pages 1-21, May.
    4. Andrew Ly & Saeid Bashash, 2020. "Fast Transactive Control for Frequency Regulation in Smart Grids with Demand Response and Energy Storage," Energies, MDPI, vol. 13(18), pages 1-23, September.
    5. Michael Schimpe & Christian Piesch & Holger C. Hesse & Julian Paß & Stefan Ritter & Andreas Jossen, 2018. "Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System," Energies, MDPI, vol. 11(3), pages 1-17, March.
    6. Minhan Yoon & Jaehyeong Lee & Sungyoon Song & Yeontae Yoo & Gilsoo Jang & Seungmin Jung & Sungchul Hwang, 2019. "Utilization of Energy Storage System for Frequency Regulation in Large-Scale Transmission System," Energies, MDPI, vol. 12(20), pages 1-13, October.
    7. Sung-Min Cho & Sang-Yun Yun, 2017. "Optimal Power Assignment of Energy Storage Systems to Improve the Energy Storage Efficiency for Frequency Regulation," Energies, MDPI, vol. 10(12), pages 1-13, December.
    8. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    9. Jin-Sun Yang & Jin-Young Choi & Geon-Ho An & Young-Jun Choi & Myoung-Hoe Kim & Dong-Jun Won, 2016. "Optimal Scheduling and Real-Time State-of-Charge Management of Energy Storage System for Frequency Regulation," Energies, MDPI, vol. 9(12), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siyi Huang & Jianqiang Kang & Bowen Zhao & Oukai Wu & Jing V. Wang, 2023. "A SOC Correction Method Based on Unsynchronized Full Charge and Discharge Control Strategy in Multi-Branch Battery System," Energies, MDPI, vol. 16(17), pages 1-15, August.
    2. Gustavo Adolfo Gómez-Ramírez & Carlos Meza & Gonzalo Mora-Jiménez & José Rodrigo Rojas Morales & Luis García-Santander, 2023. "The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition," Energies, MDPI, vol. 16(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sung-Min Cho & Jin-Su Kim & Jae-Chul Kim, 2019. "Optimal Operation Parameter Estimation of Energy Storage for Frequency Regulation," Energies, MDPI, vol. 12(9), pages 1-21, May.
    2. Diego Mejía-Giraldo & Gregorio Velásquez-Gomez & Nicolás Muñoz-Galeano & Juan Bernardo Cano-Quintero & Santiago Lemos-Cano, 2019. "A BESS Sizing Strategy for Primary Frequency Regulation Support of Solar Photovoltaic Plants," Energies, MDPI, vol. 12(2), pages 1-16, January.
    3. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Andre T. Puati Zau & Mpho J. Lencwe & S. P. Daniel Chowdhury & Thomas O. Olwal, 2022. "A Battery Management Strategy in a Lead-Acid and Lithium-Ion Hybrid Battery Energy Storage System for Conventional Transport Vehicles," Energies, MDPI, vol. 15(7), pages 1-29, April.
    5. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    6. Woan-Ho Park & Hamza Abunima & Mark B. Glick & Yun-Su Kim, 2021. "Energy Curtailment Scheduling MILP Formulation for an Islanded Microgrid with High Penetration of Renewable Energy," Energies, MDPI, vol. 14(19), pages 1-15, September.
    7. Rajan, Rijo & Fernandez, Francis M. & Yang, Yongheng, 2021. "Primary frequency control techniques for large-scale PV-integrated power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Rehman, Obaid Ur & Khan, Shahid A. & Javaid, Nadeem, 2021. "Decoupled building-to-transmission-network for frequency support in PV systems dominated grid," Renewable Energy, Elsevier, vol. 178(C), pages 930-945.
    9. Timur Yunusov & Maximilian J. Zangs & William Holderbaum, 2017. "Control of Energy Storage," Energies, MDPI, vol. 10(7), pages 1-5, July.
    10. Xiong, Chengyan & Sun, Zhe & Meng, Qinglong & Li, Zeyang & Wei, Yingan & Zhao, Fan & Jiang, Le, 2022. "A simplified improved transactive control of air-conditioning demand response for determining room set-point temperature: Experimental studies," Applied Energy, Elsevier, vol. 323(C).
    11. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Hun-Chul Seo, 2017. "New Configuration and Novel Reclosing Procedure of Distribution System for Utilization of BESS as UPS in Smart Grid," Sustainability, MDPI, vol. 9(4), pages 1-16, March.
    13. Ying-Yi Hong & Yong-Zhen Lai & Yung-Ruei Chang & Yih-Der Lee & Chia-Hui Lin, 2018. "Optimizing Energy Storage Capacity in Islanded Microgrids Using Immunity-Based Multiobjective Planning," Energies, MDPI, vol. 11(3), pages 1-15, March.
    14. Yuttana Kongjeen & Krischonme Bhumkittipich, 2018. "Impact of Plug-in Electric Vehicles Integrated into Power Distribution System Based on Voltage-Dependent Power Flow Analysis," Energies, MDPI, vol. 11(6), pages 1-16, June.
    15. Fabio Bignucolo & Alberto Cerretti & Massimiliano Coppo & Andrea Savio & Roberto Turri, 2017. "Impact of Distributed Generation Grid Code Requirements on Islanding Detection in LV Networks," Energies, MDPI, vol. 10(2), pages 1-16, January.
    16. Bernhard Faessler, 2021. "Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review," Energies, MDPI, vol. 14(8), pages 1-19, April.
    17. Elio Chiodo & Davide Lauria & Fabio Mottola & Daniela Proto & Domenico Villacci & Giorgio Maria Giannuzzi & Cosimo Pisani, 2022. "Probabilistic Description of the State of Charge of Batteries Used for Primary Frequency Regulation," Energies, MDPI, vol. 15(18), pages 1-24, September.
    18. Paolo Scarabaggio & Raffaele Carli & Graziana Cavone & Mariagrazia Dotoli, 2020. "Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective," Energies, MDPI, vol. 13(17), pages 1-19, September.
    19. Houfei Lin & Jianxin Jin & Qidai Lin & Bo Li & Chengzhi Wei & Wenfa Kang & Minyou Chen, 2019. "Distributed Settlement of Frequency Regulation Based on a Battery Energy Storage System," Energies, MDPI, vol. 12(1), pages 1-17, January.
    20. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2017. "Analyzing the Impacts of System Parameters on MPC-Based Frequency Control for a Stand-Alone Microgrid," Energies, MDPI, vol. 10(4), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2672-:d:549710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.