IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p317-d199345.html
   My bibliography  Save this article

A BESS Sizing Strategy for Primary Frequency Regulation Support of Solar Photovoltaic Plants

Author

Listed:
  • Diego Mejía-Giraldo

    (Grupo en Manejo Eficiente de la Energía (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Gregorio Velásquez-Gomez

    (Empresa de Energía del Pacífico S.A. E.S.P (EPSA)-Celsia S.A. E.S.P, Carrera 43A No. 1 sur-143, Medellín 050021, Colombia)

  • Nicolás Muñoz-Galeano

    (Grupo en Manejo Eficiente de la Energía (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Juan Bernardo Cano-Quintero

    (Grupo en Manejo Eficiente de la Energía (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Santiago Lemos-Cano

    (Empresa de Energía del Pacífico S.A. E.S.P (EPSA)-Celsia S.A. E.S.P, Carrera 43A No. 1 sur-143, Medellín 050021, Colombia)

Abstract

This paper proposes a strategy for sizing a battery energy storage system ( BESS ) that supports primary frequency regulation ( PFR ) service of solar photo-voltaic plants. The strategy is composed of an optimization model and a performance assessment algorithm. The optimization model includes not only investment costs, but also a novel penalty function depending on the state of charge ( SoC ). This function avoids the existence of a potential inappropriate SoC trajectory during BESS operation that could impede the supply of PFR service. The performance assessment algorithm, fed by the optimization model sizing results, allows the emulation of BESS operation and determines either the success or failure of a particular BESS design. The quality of a BESS design is measured through number of days in which BESS failed to satisfactorily provide PFR and its associated penalization cost. Battery lifetime, battery replacements, and SoC are also key performance indexes that finally permit making better decisions in the election of the best BESS size. The inclusion of multiple BESS operational restrictions under PFR is another important advantage of this strategy since it adds a realistic characterization of BESS to the analysis. The optimization model was coded using GAMS/CPLEX, and the performance assessment algorithm was implemented in MATLAB. Results were obtained using actual frequency data obtained from the Colombian power system; and the resulting BESS sizes show that the number of BESS penalties, caused by failure to provide PFR service, can be reduced to zero at minimum investment cost.

Suggested Citation

  • Diego Mejía-Giraldo & Gregorio Velásquez-Gomez & Nicolás Muñoz-Galeano & Juan Bernardo Cano-Quintero & Santiago Lemos-Cano, 2019. "A BESS Sizing Strategy for Primary Frequency Regulation Support of Solar Photovoltaic Plants," Energies, MDPI, vol. 12(2), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:317-:d:199345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Benato & Sebastian Dambone Sessa & Maura Musio & Francesco Palone & Rosario Maria Polito, 2018. "Italian Experience on Electrical Storage Ageing for Primary Frequency Regulation," Energies, MDPI, vol. 11(8), pages 1-12, August.
    2. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    3. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    4. Xia Zhou & Wei Li & Mengya Li & Qian Chen & Chaohai Zhang & Jilai Yu, 2016. "Effect of the Coordinative Optimization of Interruptible Loads in Primary Frequency Regulation on Frequency Recovery," Energies, MDPI, vol. 9(3), pages 1-11, March.
    5. Xiangwu Yan & Xueyuan Zhang & Bo Zhang & Zhonghao Jia & Tie Li & Ming Wu & Jun Jiang, 2018. "A Novel Two-Stage Photovoltaic Grid-Connected Inverter Voltage-Type Control Method with Failure Zone Characteristics," Energies, MDPI, vol. 11(7), pages 1-17, July.
    6. Quynh T.T Tran & Maria Luisa Di Silvestre & Eleonora Riva Sanseverino & Gaetano Zizzo & Thanh Nam Pham, 2018. "Driven Primary Regulation for Minimum Power Losses Operation in Islanded Microgrids," Energies, MDPI, vol. 11(11), pages 1-17, October.
    7. Junhui Li & Yunbao Ma & Gang Mu & Xichao Feng & Gangui Yan & Gan Guo & Tianyang Zhang, 2018. "Optimal Configuration of Energy Storage System Coordinating Wind Turbine to Participate Power System Primary Frequency Regulation," Energies, MDPI, vol. 11(6), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonginkosi A. Thango & Pitshou N. Bokoro, 2022. "Battery Energy Storage for Photovoltaic Application in South Africa: A Review," Energies, MDPI, vol. 15(16), pages 1-21, August.
    2. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    3. Fulin Fan & Giorgio Zorzi & David Campos-Gaona & Graeme Burt & Olimpo Anaya-Lara & John Nwobu & Ander Madariaga, 2021. "Sizing and Coordination Strategies of Battery Energy Storage System Co-Located with Wind Farm: The UK Perspective," Energies, MDPI, vol. 14(5), pages 1-21, March.
    4. Sandro Sitompul & Goro Fujita, 2021. "Impact of Advanced Load-Frequency Control on Optimal Size of Battery Energy Storage in Islanded Microgrid System," Energies, MDPI, vol. 14(8), pages 1-18, April.
    5. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. D’Ettorre, F. & Banaei, M. & Ebrahimy, R. & Pourmousavi, S. Ali & Blomgren, E.M.V. & Kowalski, J. & Bohdanowicz, Z. & Łopaciuk-Gonczaryk, B. & Biele, C. & Madsen, H., 2022. "Exploiting demand-side flexibility: State-of-the-art, open issues and social perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    2. Hyung-Seung Kim & Junho Hong & In-Sun Choi, 2021. "Implementation of Distributed Autonomous Control Based Battery Energy Storage System for Frequency Regulation," Energies, MDPI, vol. 14(9), pages 1-19, May.
    3. Hector Beltran & Sam Harrison & Agustí Egea-Àlvarez & Lie Xu, 2020. "Techno-Economic Assessment of Energy Storage Technologies for Inertia Response and Frequency Support from Wind Farms," Energies, MDPI, vol. 13(13), pages 1-21, July.
    4. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    5. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    6. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    7. Wang, Longyi & Wu, Mei & Sun, Xiao & Gan, Zhihua, 2016. "A cascade pulse tube cooler capable of energy recovery," Applied Energy, Elsevier, vol. 164(C), pages 572-578.
    8. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    10. Ziad Ragab & Ehsan Pashajavid & Sumedha Rajakaruna, 2024. "Optimal Sizing and Economic Analysis of Community Battery Systems Considering Sensitivity and Uncertainty Factors," Energies, MDPI, vol. 17(18), pages 1-20, September.
    11. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    12. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    13. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    14. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    15. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    16. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    17. Sherif A. Zaid & Ahmed M. Kassem & Aadel M. Alatwi & Hani Albalawi & Hossam AbdelMeguid & Atef Elemary, 2023. "Optimal Control of an Autonomous Microgrid Integrated with Super Magnetic Energy Storage Using an Artificial Bee Colony Algorithm," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    18. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    19. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    20. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:317-:d:199345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.