IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2577-d785303.html
   My bibliography  Save this article

A Battery Management Strategy in a Lead-Acid and Lithium-Ion Hybrid Battery Energy Storage System for Conventional Transport Vehicles

Author

Listed:
  • Andre T. Puati Zau

    (Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa)

  • Mpho J. Lencwe

    (Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa)

  • S. P. Daniel Chowdhury

    (Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa)

  • Thomas O. Olwal

    (Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa)

Abstract

Conventional vehicles, having internal combustion engines, use lead-acid batteries (LABs) for starting, lighting, and ignition purposes. However, because of new additional features (i.e., enhanced electronics and start/stop functionalities) in these vehicles, LABs undergo deep discharges due to frequent engine cranking, which in turn affect their lifespan. Therefore, this research study seeks to improve LABs’ performance in terms of meeting the required vehicle cold cranking current (CCC) and long lifespan. The performance improvement is achieved by hybridizing a lead-acid with a lithium-ion battery at a pack level using a fully active topology approach. This topology approach connects the individual energy storage systems to their bidirectional DC-DC converter for ease of control. Besides, a battery management strategy based on fuzzy logic and a triple-loop proportional-integral (PI) controller is implemented for these conversion systems to ensure effective current sharing between lead-acid and lithium-ion batteries. A fuzzy logic controller provides a percentage reference current needed from the battery and regulates the batteries’ state-of-charge (SoC) within the desired limits. A triple-loop controller monitors and limits the hybridized system’s current sharing and voltage within the required range during cycling. The hybridized system is developed and validated using Matlab/Simulink. The battery packs are developed using the battery manufacturers’ data sheets. The results of the research, compared with a single LAB, show that by controlling the current flow and maintaining the SoC within the desired limits, the hybrid energy storage system can meet the desired vehicle cold cranking current at a reduced weight. Furthermore, the lead-acid battery lifespan based on a fatigue cycle-model is improved from two years to 8.5 years, thus improving its performance in terms of long lifespan.

Suggested Citation

  • Andre T. Puati Zau & Mpho J. Lencwe & S. P. Daniel Chowdhury & Thomas O. Olwal, 2022. "A Battery Management Strategy in a Lead-Acid and Lithium-Ion Hybrid Battery Energy Storage System for Conventional Transport Vehicles," Energies, MDPI, vol. 15(7), pages 1-29, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2577-:d:785303
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mpho J. Lencwe & S. P. Daniel Chowdhury & Thomas O. Olwal, 2021. "An Effective Control for Lead-Acid Performance Enhancement in a Hybrid Battery-Supercapacitor System Used in Transport Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-27, December.
    2. Mpho J. Lencwe & Shyama P. Chowdhury & Thomas O. Olwal, 2018. "A Multi-Stage Approach to a Hybrid Lead Acid Battery and Supercapacitor System for Transport Vehicles," Energies, MDPI, vol. 11(11), pages 1-16, October.
    3. Yiqun Liu & Y. Gene Liao & Ming-Chia Lai, 2020. "Lithium-Ion Polymer Battery for 12-Voltage Applications: Experiment, Modelling, and Validation," Energies, MDPI, vol. 13(3), pages 1-15, February.
    4. Tae-Won Noh & Jung-Hoon Ahn & Byoung Kuk Lee, 2019. "Cranking Capability Estimation Algorithm Based on Modeling and Online Update of Model Parameters for Li-Ion SLI Batteries," Energies, MDPI, vol. 12(17), pages 1-14, September.
    5. Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2015. "Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach," Applied Energy, Elsevier, vol. 139(C), pages 151-162.
    6. Zhuang, Weichao & Ye, Jianwei & Song, Ziyou & Yin, Guodong & Li, Guangmin, 2020. "Comparison of semi-active hybrid battery system configurations for electric taxis application," Applied Energy, Elsevier, vol. 259(C).
    7. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    8. Yinjiao Xing & Eden W. M. Ma & Kwok L. Tsui & Michael Pecht, 2011. "Battery Management Systems in Electric and Hybrid Vehicles," Energies, MDPI, vol. 4(11), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Jie & Zhou, Mengxiong & Guo, Renwei & Tang, Jiankang & Su, Jiaoyue & Huang, Hui & Sun, Na & Nazir, Muhammad Shahzad & Wang, Yaodong, 2023. "A electric power optimal scheduling study of hybrid energy storage system integrated load prediction technology considering ageing mechanism," Renewable Energy, Elsevier, vol. 215(C).
    2. Hartani, Mohamed Amine & Rezk, Hegazy & Benhammou, Aissa & Hamouda, Messaoud & Abdelkhalek, Othmane & Mekhilef, Saad & Olabi, A.G., 2023. "Proposed frequency decoupling-based fuzzy logic control for power allocation and state-of-charge recovery of hybrid energy storage systems adopting multi-level energy management for multi-DC-microgrid," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Gang Xiao & Qihong Chen & Peng Xiao & Liyan Zhang & Quansen Rong, 2022. "Multiobjective Optimization for a Li-Ion Battery and Supercapacitor Hybrid Energy Storage Electric Vehicle," Energies, MDPI, vol. 15(8), pages 1-13, April.
    3. Qi, Nanjian & Yin, Yajiang & Dai, Keren & Wu, Chengjun & Wang, Xiaofeng & You, Zheng, 2021. "Comprehensive optimized hybrid energy storage system for long-life solar-powered wireless sensor network nodes," Applied Energy, Elsevier, vol. 290(C).
    4. Niu, Junyan & Zhuang, Weichao & Ye, Jianwei & Song, Ziyou & Yin, Guodong & Zhang, Yuanjian, 2022. "Optimal sizing and learning-based energy management strategy of NCR/LTO hybrid battery system for electric taxis," Energy, Elsevier, vol. 257(C).
    5. Kortas, Imen & Sakly, Anis & Mimouni, Mohamed Faouzi, 2015. "Analytical solution of optimized energy consumption of Double Star Induction Motor operating in transient regime using a Hamilton–Jacobi–Bellman equation," Energy, Elsevier, vol. 89(C), pages 55-64.
    6. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    7. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    8. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    9. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    10. Liu, Hanyou & Fan, Ailong & Li, Yongping & Bucknall, Richard & Chen, Li, 2024. "Hierarchical distributed MPC method for hybrid energy management: A case study of ship with variable operating conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
    12. Lei, Fei & Bai, Yingchun & Zhu, Wenhao & Liu, Jinhong, 2019. "A novel approach for electric powertrain optimization considering vehicle power performance, energy consumption and ride comfort," Energy, Elsevier, vol. 167(C), pages 1040-1050.
    13. Chaofeng Pan & Yanyan Liang & Long Chen & Liao Chen, 2019. "Optimal Control for Hybrid Energy Storage Electric Vehicle to Achieve Energy Saving Using Dynamic Programming Approach," Energies, MDPI, vol. 12(4), pages 1-19, February.
    14. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    15. Mazhar Abbas & Eung-sang Kim & Seul-ki Kim & Yun-su Kim, 2016. "Comparative Analysis of Battery Behavior with Different Modes of Discharge for Optimal Capacity Sizing and BMS Operation," Energies, MDPI, vol. 9(10), pages 1-19, October.
    16. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    17. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    18. Rajan, Rijo & Fernandez, Francis M. & Yang, Yongheng, 2021. "Primary frequency control techniques for large-scale PV-integrated power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Jiang, Hongliang & Xu, Liangfei & Li, Jianqiu & Hu, Zunyan & Ouyang, Minggao, 2019. "Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms," Energy, Elsevier, vol. 177(C), pages 386-396.
    20. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2577-:d:785303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.