A Dendritic Neuron Model Optimized by Meta-Heuristics with a Power-Law-Distributed Population Interaction Network for Financial Time-Series Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kilian, Lutz & Taylor, Mark P., 2003.
"Why is it so difficult to beat the random walk forecast of exchange rates?,"
Journal of International Economics, Elsevier, vol. 60(1), pages 85-107, May.
- Kilian, Lutz & Taylor, Mark P., 2001. "Why is it so difficult to beat the random walk forecast of exchange rates?," Working Paper Series 88, European Central Bank.
- Lutz Kilian & Mark P. Taylor, 2001. "Why Is It So Difficult to Beat the Random Walk Forecast of Exchange Rates?," Working Papers 464, Research Seminar in International Economics, University of Michigan.
- Lutz Kilian & Mark P. Taylor, 2001. "Why is it so difficult to beat the Random Walk Forecast of Exchange Rates?," Tinbergen Institute Discussion Papers 01-031/4, Tinbergen Institute.
- Taylor, Mark & Kilian, Lutz, 2001. "Why is it so Difficult to Beat the Random Walk Forecast of Exchange Rates?," CEPR Discussion Papers 3024, C.E.P.R. Discussion Papers.
- Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
- Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
- David Reid & Abir Jaafar Hussain & Hissam Tawfik, 2014. "Financial Time Series Prediction Using Spiking Neural Networks," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-13, August.
- Li, Xiaosi & Li, Jiayi & Yang, Haichuan & Wang, Yirui & Gao, Shangce, 2022. "Population interaction network in representative differential evolution algorithms: Power-law outperforms Poisson distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
- Srdjan Ostojic & Nicolas Brunel, 2011. "From Spiking Neuron Models to Linear-Nonlinear Models," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-16, January.
- Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Simona Mikšíková & David Ulčák & František Kuda, 2022. "Analysis of Malfunctions in Selected Parking Systems in the Czech Republic," Sustainability, MDPI, vol. 14(3), pages 1-10, February.
- Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
- Hossein Yousefi & Mohammad Hasan Ghodusinejad & Armin Ghodrati, 2022. "Multi-Criteria Future Energy System Planning and Analysis for Hot Arid Areas of Iran," Energies, MDPI, vol. 15(24), pages 1-25, December.
- Dyna Heng & Anna Ivanova & Rodrigo Mariscal & Ms. Uma Ramakrishnan & Joyce Wong, 2016. "Advancing Financial Development in Latin America and the Caribbean," IMF Working Papers 2016/081, International Monetary Fund.
- Kang, Wensheng & Ratti, Ronald A. & Vespignani, Joaquin L., 2016. "The implications of monetary expansion in China for the US dollar," Journal of Asian Economics, Elsevier, vol. 46(C), pages 71-84.
- Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Guo-hua Ye & Mirxat Alim & Peng Guan & De-sheng Huang & Bao-sen Zhou & Wei Wu, 2021. "Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-13, March.
- Ahmed Belhadjayed & Grégoire Loeper & Frédéric Abergel, 2016. "Forecasting Trends With Asset Prices," Post-Print hal-01512431, HAL.
- Zhang, Rong & Ashuri, Baabak & Shyr, Yu & Deng, Yong, 2018. "Forecasting Construction Cost Index based on visibility graph: A network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 239-252.
- Karzan Mahdi Ghafour & Abdulqadir Rahomee Ahmed Aljanabi, 2023. "The role of forecasting in preventing supply chain disruptions during the COVID-19 pandemic: a distributor-retailer perspective," Operations Management Research, Springer, vol. 16(2), pages 780-793, June.
- Fieger, Peter & Rice, John, 2016. "Modelling Chinese Inbound Tourism Arrivals into Christchurch," MPRA Paper 75468, University Library of Munich, Germany.
- Koopman, Siem Jan & Ooms, Marius, 2006.
"Forecasting daily time series using periodic unobserved components time series models,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
- Siem Jan Koopman & Marius Ooms, 2004. "Forecasting Daily Time Series using Periodic Unobserved Components Time Series Models," Tinbergen Institute Discussion Papers 04-135/4, Tinbergen Institute.
- Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
- Sprangers, Olivier & Schelter, Sebastian & de Rijke, Maarten, 2023. "Parameter-efficient deep probabilistic forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 332-345.
- Kosuke Kawakami & Hirokazu Kobayashi & Kazuhide Nakata, 2021. "Seasonal Inventory Management Model for Raw Materials in Steel Industry," Interfaces, INFORMS, vol. 51(4), pages 312-324, July.
- Hu, Yuntong & Xiao, Fuyuan, 2022. "A novel method for forecasting time series based on directed visibility graph and improved random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
- Xianbo Li, 2022. "Sequence Model and Prediction for Sustainable Enrollments in Chinese Universities," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
- Andrea Kolková & Petr Rozehnal, 2022. "Hybrid demand forecasting models: pre-pandemic and pandemic use studies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 699-725, September.
More about this item
Keywords
dendritic neuron model; meta-heuristic algorithms; financial time-series forecasting; population interaction networks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1251-:d:1087890. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.