Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jbusres.2020.09.033
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
- James W. Taylor, 2012. "Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing," Management Science, INFORMS, vol. 58(3), pages 534-549, March.
- Athanassios N. Avramidis & Alexandre Deslauriers & Pierre L'Ecuyer, 2004. "Modeling Daily Arrivals to a Telephone Call Center," Management Science, INFORMS, vol. 50(7), pages 896-908, July.
- Neeraj Arora & Greg M. Allenby & James L. Ginter, 1998. "A Hierarchical Bayes Model of Primary and Secondary Demand," Marketing Science, INFORMS, vol. 17(1), pages 29-44.
- Bruce H. Andrews & Shawn M. Cunningham, 1995. "L. L. Bean Improves Call-Center Forecasting," Interfaces, INFORMS, vol. 25(6), pages 1-13, December.
- Ebadi Jalal, Mona & Hosseini, Monireh & Karlsson, Stefan, 2016. "Forecasting incoming call volumes in call centers with recurrent Neural Networks," Journal of Business Research, Elsevier, vol. 69(11), pages 4811-4814.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Weinberg, Jonathan & Brown, Lawrence D. & Stroud, Jonathan R., 2007. "Bayesian Forecasting of an Inhomogeneous Poisson Process With Applications to Call Center Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1185-1198, December.
- Agrawal, Ajay & Gans, Joshua S. & Goldfarb, Avi, 2019.
"Exploring the impact of artificial Intelligence: Prediction versus judgment,"
Information Economics and Policy, Elsevier, vol. 47(C), pages 1-6.
- Ajay K. Agrawal & Joshua S. Gans & Avi Goldfarb, 2018. "Exploring the Impact of Artificial Intelligence: Prediction versus Judgment," NBER Working Papers 24626, National Bureau of Economic Research, Inc.
- James W. Taylor, 2008. "A Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at a Call Center," Management Science, INFORMS, vol. 54(2), pages 253-265, February.
- Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
- Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
- Lemmens, A. & Croux, C., 2006. "Bagging and boosting classification trees to predict churn," Other publications TiSEM d5cb664d-5859-44db-a621-e, Tilburg University, School of Economics and Management.
- Dean Fantazzini & Silvia Figini, 2009. "Random Survival Forests Models for SME Credit Risk Measurement," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 29-45, March.
- Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
- Júlíus Atlason & Marina A. Epelman & Shane G. Henderson, 2008. "Optimizing Call Center Staffing Using Simulation and Analytic Center Cutting-Plane Methods," Management Science, INFORMS, vol. 54(2), pages 295-309, February.
- Mehmet Tolga Cezik & Pierre L'Ecuyer, 2008. "Staffing Multiskill Call Centers via Linear Programming and Simulation," Management Science, INFORMS, vol. 54(2), pages 310-323, February.
- Howard E. Thompson & George C. Tiao, 1971. "Analysis of Telephone Data: A Case Study of Forecasting Seasonal Time Series," Bell Journal of Economics, The RAND Corporation, vol. 2(2), pages 515-541, Autumn.
- Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
- K. Coussement & D. Van Den Poel, 2006.
"Churn Prediction in Subscription Services: an Application of Support Vector Machines While Comparing Two Parameter-Selection Techniques,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
06/412, Ghent University, Faculty of Economics and Business Administration.
- K. Coussement & D. van den Poel, 2008. "Churn prediction in subscription services: an application of support vector machines while comparing two parameter-selection techniques," Post-Print hal-00788096, HAL.
- Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
- Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
- Agrawal, Ajay & Gans, Joshua & Goldfarb, Avi (ed.), 2019. "The Economics of Artificial Intelligence," National Bureau of Economic Research Books, University of Chicago Press, number 9780226613338, September.
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Haipeng Shen & Jianhua Z. Huang, 2008. "Interday Forecasting and Intraday Updating of Call Center Arrivals," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 391-410, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Feng, Yi & Yin, Yunqiang & Wang, Dujuan & Dhamotharan, Lalitha, 2022. "A dynamic ensemble selection method for bank telemarketing sales prediction," Journal of Business Research, Elsevier, vol. 139(C), pages 368-382.
- Sullivan, Yulia & Fosso Wamba, Samuel, 2024. "Artificial intelligence and adaptive response to market changes: A strategy to enhance firm performance and innovation," Journal of Business Research, Elsevier, vol. 174(C).
- Araz Zirar, 2023. "Can artificial intelligence’s limitations drive innovative work behaviour?," Review of Managerial Science, Springer, vol. 17(6), pages 2005-2034, August.
- Konuk, Hızır & Ataman, Göksel & Kambur, Emine, 2023. "The effect of digitalized workplace on employees' psychological well-being: Digital Taylorism approach," Technology in Society, Elsevier, vol. 74(C).
- Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
- Jeremy K. Nguyen & Adam Karg & Abbas Valadkhani & Heath McDonald, 2022. "Predicting individual event attendance with machine learning: a ‘step-forward’ approach," Applied Economics, Taylor & Francis Journals, vol. 54(27), pages 3138-3153, June.
- Notz, Pascal M. & Wolf, Peter K. & Pibernik, Richard, 2023. "Prescriptive analytics for a multi-shift staffing problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 887-901.
- Sagarika Mishra & Michael T. Ewing & Holly B. Cooper, 2022. "Artificial intelligence focus and firm performance," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1176-1197, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
- Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019.
"Statistical and economic evaluation of time series models for forecasting arrivals at call centers,"
Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1109, Universitá degli Studi di Milano.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2017. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," ETA: Economic Theory and Applications 253725, Fondazione Eni Enrico Mattei (FEEM).
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2017. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," Working Papers 2017.06, Fondazione Eni Enrico Mattei.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2016. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," MPRA Paper 76308, University Library of Munich, Germany.
- Andrea BASTIANIN & Marzio GALEOTTI & Matteo MANERA, 2011. "Forecast evaluation in call centers: combined forecasts, flexible loss functions and economic criteria," Departmental Working Papers 2011-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2018. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," Papers 1804.08315, arXiv.org.
- Kinshuk Jerath & Anuj Kumar & Serguei Netessine, 2015. "An Information Stock Model of Customer Behavior in Multichannel Customer Support Services," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 368-383, July.
- Ding, S. & Koole, G. & van der Mei, R.D., 2015. "On the estimation of the true demand in call centers with redials and reconnects," European Journal of Operational Research, Elsevier, vol. 246(1), pages 250-262.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
- Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Itai Gurvich & James Luedtke & Tolga Tezcan, 2010. "Staffing Call Centers with Uncertain Demand Forecasts: A Chance-Constrained Optimization Approach," Management Science, INFORMS, vol. 56(7), pages 1093-1115, July.
- Noah Gans & Haipeng Shen & Yong-Pin Zhou & Nikolay Korolev & Alan McCord & Herbert Ristock, 2015. "Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 571-588, October.
- Robbins, Thomas R. & Harrison, Terry P., 2010. "A stochastic programming model for scheduling call centers with global Service Level Agreements," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1608-1619, December.
- Boris N. Oreshkin & Nazim Réegnard & Pierre L’Ecuyer, 2016. "Rate-Based Daily Arrival Process Models with Application to Call Centers," Operations Research, INFORMS, vol. 64(2), pages 510-527, April.
- James W. Taylor, 2012. "Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing," Management Science, INFORMS, vol. 58(3), pages 534-549, March.
- René Bekker & Dennis Moeke & Bas Schmidt, 2019. "Keeping pace with the ebbs and flows in daily nursing home operations," Health Care Management Science, Springer, vol. 22(2), pages 350-363, June.
- Tevfik Aktekin & Refik Soyer, 2011. "Call center arrival modeling: A Bayesian state‐space approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(1), pages 28-42, February.
- Paris A. Mastorocostas & Constantinos S. Hilas & Dimitris N. Varsamis & Stergiani C. Dova, 2016. "Telecommunications call volume forecasting with a block-diagonal recurrent fuzzy neural network," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(1), pages 15-25, September.
- Notz, Pascal M. & Wolf, Peter K. & Pibernik, Richard, 2023. "Prescriptive analytics for a multi-shift staffing problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 887-901.
More about this item
Keywords
Artificial intelligence; Machine learning; Call center forecasting; Predictive analytics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:123:y:2021:i:c:p:267-278. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.