IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p568-d485492.html
   My bibliography  Save this article

On the Possible Introduction of Mini Gas Turbine Cycles Onboard Ships for Heat and Power Generation

Author

Listed:
  • Dario Barsi

    (Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, 16145 Genoa, Italy)

  • Matteo Luzzi

    (Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, 16145 Genoa, Italy)

  • Francesca Satta

    (Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, 16145 Genoa, Italy)

  • Pietro Zunino

    (Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, 16145 Genoa, Italy)

Abstract

The recent coming in force of MARPOL 2020 restrictions on shipping pollutant emissions highlights a growing interest in current times towards cleaner means of transport. One way to achieve more sustainable vessels is represented by updating onboard engines to suit current regulations and needs: Gas Turbines are not a novelty in the field and, despite the few applications in commercial shipping so far, this technology is again under evaluation for different reasons. Indeed, it is still a preferred choice in navy, where swift maneuvering is a key factor; it is employed by fast ferries and hydrofoils for its high power/weight ratio; it has been recently applied to LNG carriers to burn boil-off gas in a more efficient way and several studies in literature suggest its possible introduction on large Cruise Ships. Since there seems to be a lack of research concerning small size units, the present work attempts to evaluate the possible usages of Mini Gas Turbine Cycles in the range of 1 to 10 MW of electric output for heat and power generation onboard commercial vessels dedicated to passenger transport. For this purpose, a statistical analysis on existing operating vessels up to 2020 was made, to eplore main engine sizes; a literature review was carried out to find representative onboard heat demands. Once the main vessel electrical and thermal requirements were evaluated, Mini Cogenerative plants based on Gas Turbines were designed within the identified boundaries and compared with state-of-the-art Marine Diesel Engines and Gas Turbines on estimated global performance, dimensions and weights.

Suggested Citation

  • Dario Barsi & Matteo Luzzi & Francesca Satta & Pietro Zunino, 2021. "On the Possible Introduction of Mini Gas Turbine Cycles Onboard Ships for Heat and Power Generation," Energies, MDPI, vol. 14(3), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:568-:d:485492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Altosole & Giovanni Benvenuto & Ugo Campora & Michele Laviola & Alessandro Trucco, 2017. "Waste Heat Recovery from Marine Gas Turbines and Diesel Engines," Energies, MDPI, vol. 10(5), pages 1-24, May.
    2. Rivera-Alvarez, Alejandro & Coleman, Michael J. & Ordonez, Juan C., 2015. "Ship weight reduction and efficiency enhancement through combined power cycles," Energy, Elsevier, vol. 93(P1), pages 521-533.
    3. Francesco Baldi & Fredrik Ahlgren & Tuong-Van Nguyen & Marcus Thern & Karin Andersson, 2018. "Energy and Exergy Analysis of a Cruise Ship," Energies, MDPI, vol. 11(10), pages 1-41, September.
    4. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekaterina Sokolova & Khashayar Sadeghi & Seyed Hadi Ghazaie & Dario Barsi & Francesca Satta & Pietro Zunino, 2022. "Feasibility of Hybrid Desalination Plants Coupled with Small Gas Turbine CHP Systems," Energies, MDPI, vol. 15(10), pages 1-13, May.
    2. Ewelina Chlopinska & Diana Kotkowska & Alexander Autzen, 2021. "New Technologies for Natural Gas Supply in the Baltic Sea – Economic Aspect," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 200-212.
    3. Ramon Francesconi & Matteo Luzzi & Dario Barsi & Francesca Satta & Fabrizio Stefani & Pietro Zunino, 2022. "Preliminary Design of a Mini Gas Turbine via 1D Methodology," Energies, MDPI, vol. 15(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monaaf D. A. Al-Falahi & Tomasz Tarasiuk & Shantha Gamini Jayasinghe & Zheming Jin & Hossein Enshaei & Josep M. Guerrero, 2018. "AC Ship Microgrids: Control and Power Management Optimization," Energies, MDPI, vol. 11(6), pages 1-20, June.
    2. Abdulaziz M. T. Alzayedi & Suresh Sampath & Pericles Pilidis, 2022. "Techno-Environmental Evaluation of a Liquefied Natural Gas-Fuelled Combined Gas Turbine with Steam Cycles for Large Container Ship Propulsion Systems," Energies, MDPI, vol. 15(5), pages 1-22, February.
    3. Dettù, Federico & Pozzato, Gabriele & Rizzo, Denise M. & Onori, Simona, 2021. "Exergy-based modeling framework for hybrid and electric ground vehicles," Applied Energy, Elsevier, vol. 300(C).
    4. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
    5. Miretti, Federico & Misul, Daniela & Gennaro, Giulio & Ferrari, Antonio, 2022. "Hybridizing waterborne transport: Modeling and simulation of low-emissions hybrid waterbuses for the city of Venice," Energy, Elsevier, vol. 244(PB).
    6. Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
    7. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    8. Daraz, Amil, 2023. "Optimized cascaded controller for frequency stabilization of marine microgrid system," Applied Energy, Elsevier, vol. 350(C).
    9. Raj Kumar Kamaraj & Jinu Gowthami Thankachi Raghuvaran & Arul Franco Panimayam & Haiter Lenin Allasi, 2018. "Performance and Exhaust Emission Optimization of a Dual Fuel Engine by Response Surface Methodology," Energies, MDPI, vol. 11(12), pages 1-13, December.
    10. Fabrizio Reale & Raffaela Calabria & Patrizio Massoli, 2023. "Performance Analysis of WHR Systems for Marine Applications Based on sCO 2 Gas Turbine and ORC," Energies, MDPI, vol. 16(11), pages 1-19, May.
    11. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    12. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    13. Palomba, Valeria & Aprile, Marcello & Motta, Mario & Vasta, Salvatore, 2017. "Study of sorption systems for application on low-emission fishing vessels," Energy, Elsevier, vol. 134(C), pages 554-565.
    14. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    15. Hao Jin & Xinhang Yang, 2023. "Bilevel Optimal Sizing and Operation Method of Fuel Cell/Battery Hybrid All-Electric Shipboard Microgrid," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    16. Peter L. Borland & Kevin McDonnell & Mary Harty, 2023. "Assessment of the Potential to Use the Expelled Heat Energy from a Typical Data Centre in Ireland for Alternative Farming Methods," Energies, MDPI, vol. 16(18), pages 1-32, September.
    17. Jagdesh Kumar & Aushiq Ali Memon & Lauri Kumpulainen & Kimmo Kauhaniemi & Omid Palizban, 2019. "Design and Analysis of New Harbour Grid Models to Facilitate Multiple Scenarios of Battery Charging and Onshore Supply for Modern Vessels," Energies, MDPI, vol. 12(12), pages 1-18, June.
    18. Guoling Wang & Xu Liu & Zhenyu Li & Shunxiao Xu & Zhe Chen, 2018. "An Adaptive Grid Voltage/Frequency Tracking Method Based on SOGIs on a Shipboard PV–Diesel-Battery Hybrid Power System," Energies, MDPI, vol. 11(4), pages 1-20, March.
    19. Iqbal, Rashid & Liu, Yancheng & Zeng, Yuji & Zhang, Qinjin & Zeeshan, Muhammad, 2024. "Comparative study based on techno-economics analysis of different shipboard microgrid systems comprising PV/wind/fuel cell/battery/diesel generator with two battery technologies: A step toward green m," Renewable Energy, Elsevier, vol. 221(C).
    20. Niknam, Pouriya H. & Fisher, Robin & Ciappi, Lorenzo & Sciacovelli, Adriano, 2024. "Optimally integrated waste heat recovery through combined emerging thermal technologies: Modelling, optimization and assessment for onboard multi-energy systems," Applied Energy, Elsevier, vol. 366(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:568-:d:485492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.