IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p718-d99038.html
   My bibliography  Save this article

Waste Heat Recovery from Marine Gas Turbines and Diesel Engines

Author

Listed:
  • Marco Altosole

    (Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni (DITEN), University of Genoa, Via Montallegro 1, I-16145 Genova, Italy)

  • Giovanni Benvenuto

    (Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni (DITEN), University of Genoa, Via Montallegro 1, I-16145 Genova, Italy)

  • Ugo Campora

    (Dipartimento di Ingegneria Meccanica, Energetica, Gestionale, Trasporti (DIME), University of Genoa, Via Montallegro 1, I-16145 Genova, Italy)

  • Michele Laviola

    (Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni (DITEN), University of Genoa, Via Montallegro 1, I-16145 Genova, Italy)

  • Alessandro Trucco

    (Fincantieri S.p.A., Via Cipro 11, I-16129 Genova, Italy)

Abstract

The paper presents the main results of a research project directed to the development of mathematical models for the design and simulation of combined Gas Turbine-Steam or Diesel-Steam plants for marine applications. The goal is to increase the energy conversion efficiency of both gas turbines and diesel engines, adopted in ship propulsion systems, by recovering part of the thermal energy contained in the exhaust gases through Waste Heat Recovery (WHR) dedicated installations. The developed models are used to identify the best configuration of the combined plants in order to optimize, for the different applications, the steam plant layout and the performance of WHR plant components. This research activity has allowed to obtain significant improvements in terms of energy conversion efficiency, but also on other important issues: dimensions and weights of the installations, ship load capacity, environmental compatibility, investment and operating costs. In particular, the main results of the present study can be summarized as follows: (a) the quantitative assessment of the advantages (and limits) deriving by the application of a Combined Gas And Steam (COGAS) propulsion system to a large container ship, in substitution of the traditional two-stroke diesel engine; (b) the proposal of optimized WHR propulsion and power systems for an oil tanker, for which a quantitative evaluation is given of the attainable advantages, in terms of fuel consumption and emissions reduction, in comparison with more traditional solutions.

Suggested Citation

  • Marco Altosole & Giovanni Benvenuto & Ugo Campora & Michele Laviola & Alessandro Trucco, 2017. "Waste Heat Recovery from Marine Gas Turbines and Diesel Engines," Energies, MDPI, vol. 10(5), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:718-:d:99038
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/718/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liya Ren & Huaixin Wang, 2019. "Parametric Optimization and Thermodynamic Performance Comparison of Organic Trans-Critical Cycle, Steam Flash Cycle, and Steam Dual-Pressure Cycle for Waste Heat Recovery," Energies, MDPI, vol. 12(24), pages 1-22, December.
    2. George N. Sakalis & George J. Tzortzis & Christos A. Frangopoulos, 2019. "Intertemporal Static and Dynamic Optimization of Synthesis, Design, and Operation of Integrated Energy Systems of Ships," Energies, MDPI, vol. 12(5), pages 1-50, March.
    3. Raj Kumar Kamaraj & Jinu Gowthami Thankachi Raghuvaran & Arul Franco Panimayam & Haiter Lenin Allasi, 2018. "Performance and Exhaust Emission Optimization of a Dual Fuel Engine by Response Surface Methodology," Energies, MDPI, vol. 11(12), pages 1-13, December.
    4. Abdulaziz M. T. Alzayedi & Suresh Sampath & Pericles Pilidis, 2022. "Techno-Environmental Evaluation of a Liquefied Natural Gas-Fuelled Combined Gas Turbine with Steam Cycles for Large Container Ship Propulsion Systems," Energies, MDPI, vol. 15(5), pages 1-22, February.
    5. Marco Altosole & Giovanni Benvenuto & Raphael Zaccone & Ugo Campora, 2020. "Comparison of Saturated and Superheated Steam Plants for Waste-Heat Recovery of Dual-Fuel Marine Engines," Energies, MDPI, vol. 13(4), pages 1-21, February.
    6. Rajesh Ravi & Senthilkumar Pachamuthu, 2018. "Design and Development of Innovative Protracted-Finned Counter Flow Heat Exchanger (PFCHE) for an Engine WHR and Its Impact on Exhaust Emissions," Energies, MDPI, vol. 11(10), pages 1-19, October.
    7. Monaaf D. A. Al-Falahi & Tomasz Tarasiuk & Shantha Gamini Jayasinghe & Zheming Jin & Hossein Enshaei & Josep M. Guerrero, 2018. "AC Ship Microgrids: Control and Power Management Optimization," Energies, MDPI, vol. 11(6), pages 1-20, June.
    8. Lingfeng Shi & Gequn Shu & Hua Tian & Guangdai Huang & Liwen Chang & Tianyu Chen & Xiaoya Li, 2017. "Ideal Point Design and Operation of CO 2 -Based Transcritical Rankine Cycle (CTRC) System Based on High Utilization of Engine’s Waste Heats," Energies, MDPI, vol. 10(11), pages 1-21, October.
    9. Fabrizio Reale & Raffaela Calabria & Patrizio Massoli, 2023. "Performance Analysis of WHR Systems for Marine Applications Based on sCO 2 Gas Turbine and ORC," Energies, MDPI, vol. 16(11), pages 1-19, May.
    10. Abdulaziz M. T. Alzayedi & Amit Batra & Suresh Sampath & Pericles Pilidis, 2022. "Techno-Environmental Mission Evaluation of Combined Cycle Gas Turbines for Large Container Ship Propulsion," Energies, MDPI, vol. 15(12), pages 1-13, June.
    11. Zhongbo Zhang & Lifu Li, 2018. "Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NO x Emission Control," Energies, MDPI, vol. 11(4), pages 1-22, April.
    12. Dario Barsi & Matteo Luzzi & Francesca Satta & Pietro Zunino, 2021. "On the Possible Introduction of Mini Gas Turbine Cycles Onboard Ships for Heat and Power Generation," Energies, MDPI, vol. 14(3), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:718-:d:99038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.