IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4320-d1155556.html
   My bibliography  Save this article

Performance Analysis of WHR Systems for Marine Applications Based on sCO 2 Gas Turbine and ORC

Author

Listed:
  • Fabrizio Reale

    (Institute of Sciences and Technologies for Sustainable Energy and Mobility, STEMS-CNR, 80125 Naples, Italy)

  • Raffaela Calabria

    (Institute of Sciences and Technologies for Sustainable Energy and Mobility, STEMS-CNR, 80125 Naples, Italy)

  • Patrizio Massoli

    (Institute of Sciences and Technologies for Sustainable Energy and Mobility, STEMS-CNR, 80125 Naples, Italy)

Abstract

Waste heat recovery (WHR) can represent a solution to improve the efficiency of ships’ propulsion, helping to exceed stringent greenhouse gas emission limits. This is particularly suitable in the case of propulsion based on gas turbines due to their medium-high temperature level of the exhaust gases. This study analyzes the performance of a hybrid energy grid, in which the heat is recovered by the exhaust gases of an aeroderivative gas turbine, a GE LM2500+, when the bottoming system is a supercritical CO 2 gas turbine. Given the issues and peculiarities related to the onboard installation, where size and weight are fundamental concerns, six WHR schemes have been analyzed. They span from the simple cycle to partial preheated and regenerative, to a cascade layout in which an ORC system receives thermal power by the sCO 2 GT. The influence of the seawater temperature on the performance of the hybrid energy system has been also considered. The energetic and exergetic performance comparison of the different schemes has been carried out by using the commercial software Thermoflex. The results showed that an increase in overall performance by up to 29% can be obtained and that the increase in seawater temperature can lead to a decrease in the overall performance.

Suggested Citation

  • Fabrizio Reale & Raffaela Calabria & Patrizio Massoli, 2023. "Performance Analysis of WHR Systems for Marine Applications Based on sCO 2 Gas Turbine and ORC," Energies, MDPI, vol. 16(11), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4320-:d:1155556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Altosole & Giovanni Benvenuto & Ugo Campora & Michele Laviola & Alessandro Trucco, 2017. "Waste Heat Recovery from Marine Gas Turbines and Diesel Engines," Energies, MDPI, vol. 10(5), pages 1-24, May.
    2. Gotelip, Thiago & Gampe, Uwe & Glos, Stefan, 2022. "Optimization strategies of different SCO2 architectures for gas turbine bottoming cycle applications," Energy, Elsevier, vol. 250(C).
    3. Fabrizio Reale & Raniero Sannino, 2022. "Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review," Energies, MDPI, vol. 15(3), pages 1-24, January.
    4. Navarro-Esbrí, Joaquín & Molés, Francisco & Peris, Bernardo & Mota-Babiloni, Adrián & Kontomaris, Konstantinos, 2017. "Experimental study of an Organic Rankine Cycle with HFO-1336mzz-Z as a low global warming potential working fluid for micro-scale low temperature applications," Energy, Elsevier, vol. 133(C), pages 79-89.
    5. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrizio Reale & Patrizio Massoli, 2024. "A Hybrid Energy System Based on Externally Fired Micro Gas Turbines, Waste Heat Recovery and Gasification Systems: An Energetic and Exergetic Performance Analysis," Energies, MDPI, vol. 17(15), pages 1-16, July.
    2. Jiang, Yuemao & Ma, Yue & Han, Fenghui & Ji, Yulong & Cai, Wenjian & Wang, Zhe, 2023. "Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO2 cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine," Energy, Elsevier, vol. 265(C).
    3. Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
    4. Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Patchigolla, Kumar, 2021. "Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application," Applied Energy, Elsevier, vol. 282(PA).
    5. Xi, Huan & Zhang, Honghu & He, Ya-Ling & Huang, Zuohua, 2019. "Sensitivity analysis of operation parameters on the system performance of organic rankine cycle system using orthogonal experiment," Energy, Elsevier, vol. 172(C), pages 435-442.
    6. Yuhui Xiao & Yuan Zhou & Yuan Yuan & Yanping Huang & Gengyuan Tian, 2023. "Research Advances in the Application of the Supercritical CO 2 Brayton Cycle to Reactor Systems: A Review," Energies, MDPI, vol. 16(21), pages 1-23, October.
    7. Heo, Jin Young & Kim, Min Seok & Baik, Seungjoon & Bae, Seong Jun & Lee, Jeong Ik, 2017. "Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor," Applied Energy, Elsevier, vol. 206(C), pages 1118-1130.
    8. Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Gillard, Jonathon & Patchigolla, Kumar, 2022. "Thermo-economic analysis, optimisation and systematic integration of supercritical carbon dioxide cycle with sensible heat thermal energy storage for CSP application," Energy, Elsevier, vol. 238(PB).
    9. Raj Kumar Kamaraj & Jinu Gowthami Thankachi Raghuvaran & Arul Franco Panimayam & Haiter Lenin Allasi, 2018. "Performance and Exhaust Emission Optimization of a Dual Fuel Engine by Response Surface Methodology," Energies, MDPI, vol. 11(12), pages 1-13, December.
    10. Guo, Jia-Qi & Li, Ming-Jia & Xu, Jin-Liang & Yan, Jun-Jie & Wang, Kun, 2019. "Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems," Energy, Elsevier, vol. 173(C), pages 785-798.
    11. Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
    12. Nie, Xianhua & Du, Zhenyu & Zhao, Li & Deng, Shuai & Zhang, Yue, 2019. "Molecular dynamics study on transport properties of supercritical working fluids: Literature review and case study," Applied Energy, Elsevier, vol. 250(C), pages 63-80.
    13. Duniam, Sam & Veeraragavan, Ananthanarayanan, 2019. "Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power," Energy, Elsevier, vol. 187(C).
    14. Delsoto, G.S. & Battisti, F.G. & da Silva, A.K., 2023. "Dynamic modeling and control of a solar-powered Brayton cycle using supercritical CO2 and optimization of its thermal energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 336-356.
    15. Wang, Shengpeng & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Peng, Botao & Yan, Junjie, 2020. "Thermohydrodynamic analysis of the vertical gas wall and reheat gas wall in a 300 MW supercritical CO2 boiler," Energy, Elsevier, vol. 211(C).
    16. Astolfi, Marco & Alfani, Dario & Lasala, Silvia & Macchi, Ennio, 2018. "Comparison between ORC and CO2 power systems for the exploitation of low-medium temperature heat sources," Energy, Elsevier, vol. 161(C), pages 1250-1261.
    17. Haicai Lyu & Han Wang & Qincheng Bi & Fenglei Niu, 2022. "Experimental Investigation on Heat Transfer and Pressure Drop of Supercritical Carbon Dioxide in a Mini Vertical Upward Flow," Energies, MDPI, vol. 15(17), pages 1-14, August.
    18. Gao, Lei & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2022. "Robustness analysis in supercritical CO2 power generation system configuration optimization," Energy, Elsevier, vol. 242(C).
    19. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    20. Marchionni, Matteo & Bianchi, Giuseppe & Tassou, Savvas A., 2018. "Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state," Energy, Elsevier, vol. 148(C), pages 1140-1152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4320-:d:1155556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.