IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8293-d964935.html
   My bibliography  Save this article

Preliminary Design of a Mini Gas Turbine via 1D Methodology

Author

Listed:
  • Ramon Francesconi

    (Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, Via Montallegro 1, 16145 Genoa, Italy)

  • Matteo Luzzi

    (Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, Via Montallegro 1, 16145 Genoa, Italy)

  • Dario Barsi

    (Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, Via Montallegro 1, 16145 Genoa, Italy)

  • Francesca Satta

    (Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, Via Montallegro 1, 16145 Genoa, Italy)

  • Fabrizio Stefani

    (Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, Via Montallegro 1, 16145 Genoa, Italy)

  • Pietro Zunino

    (Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, Via Montallegro 1, 16145 Genoa, Italy)

Abstract

To address the increasing interest towards more environmentally friendly naval transportation and the introduction of IMO2020 restrictions on pollutant emissions onboard ships, the present work details the preliminary design of a mini gas turbine engine, i.e., a gas turbine engine with an output power up to 5 MW, for onboard energy generation. In comparison to conventional propulsion systems, gas turbine units benefit from known compactness, which can be further enhanced by employing single-stage uncooled radial machines, according to similar works in the field. As such, the present paper aims to set up a complete procedure that allows a reliable and fast (i.e., requiring a limited computational effort) preliminary design of one-stage centrifugal compressors and radial turbines operating at a high pressure ratio via the use of classical one-dimensional theory. The aerodynamic design outputs in terms of forces and torques are then used to perform a preliminary mechanical design of the shaft by means of a one-dimensional finite element model with commercial software to estimate the corresponding shaft line stress. Despite some necessary geometrical and modeling simplification of the design problem, which results in the unavailability of detailed information on individual components, the employed procedure nevertheless allows a comprehensive overview of the possibilities in terms of maximum machine performance achievable at an early design stage with the associated limited computational requirements. The design procedure and the geometry achieved for the application are presented along with aerodynamic and structural results.

Suggested Citation

  • Ramon Francesconi & Matteo Luzzi & Dario Barsi & Francesca Satta & Fabrizio Stefani & Pietro Zunino, 2022. "Preliminary Design of a Mini Gas Turbine via 1D Methodology," Energies, MDPI, vol. 15(21), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8293-:d:964935
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabrizio Reale & Raniero Sannino, 2022. "Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review," Energies, MDPI, vol. 15(3), pages 1-24, January.
    2. Ekaterina Sokolova & Khashayar Sadeghi & Seyed Hadi Ghazaie & Dario Barsi & Francesca Satta & Pietro Zunino, 2022. "Feasibility of Hybrid Desalination Plants Coupled with Small Gas Turbine CHP Systems," Energies, MDPI, vol. 15(10), pages 1-13, May.
    3. Armellini, A. & Daniotti, S. & Pinamonti, P. & Reini, M., 2018. "Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations," Applied Energy, Elsevier, vol. 211(C), pages 306-317.
    4. Ronelly De Souza & Melchiorre Casisi & Diego Micheli & Mauro Reini, 2021. "A Review of Small–Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario," Energies, MDPI, vol. 14(17), pages 1-30, August.
    5. Dario Barsi & Matteo Luzzi & Francesca Satta & Pietro Zunino, 2021. "On the Possible Introduction of Mini Gas Turbine Cycles Onboard Ships for Heat and Power Generation," Energies, MDPI, vol. 14(3), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    2. Fabrizio Reale & Raffaela Calabria & Patrizio Massoli, 2023. "Performance Analysis of WHR Systems for Marine Applications Based on sCO 2 Gas Turbine and ORC," Energies, MDPI, vol. 16(11), pages 1-19, May.
    3. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    4. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    5. Reyhaneh Banihabib & Mohsen Assadi, 2022. "The Role of Micro Gas Turbines in Energy Transition," Energies, MDPI, vol. 15(21), pages 1-22, October.
    6. Ekaterina Sokolova & Khashayar Sadeghi & Seyed Hadi Ghazaie & Dario Barsi & Francesca Satta & Pietro Zunino, 2022. "Feasibility of Hybrid Desalination Plants Coupled with Small Gas Turbine CHP Systems," Energies, MDPI, vol. 15(10), pages 1-13, May.
    7. Xie, Peilin & Tan, Sen & Bazmohammadi, Najmeh & Guerrero, Josep. M. & Vasquez, Juan. C. & Alcala, Jose Matas & Carreño, Jorge El Mariachet, 2022. "A distributed real-time power management scheme for shipboard zonal multi-microgrid system," Applied Energy, Elsevier, vol. 317(C).
    8. Bolbot, Victor & Trivyza, Nikoletta L. & Theotokatos, Gerasimos & Boulougouris, Evangelos & Rentizelas, Athanasios & Vassalos, Dracos, 2020. "Cruise ships power plant optimisation and comparative analysis," Energy, Elsevier, vol. 196(C).
    9. Chen, Longxiang & Liu, Xi & Ye, Kai & Xie, Meina & Lan, Wenchao, 2023. "Thermodynamic and economic analysis of an integration system of multi-effect desalination (MED) with ice storage based on a heat pump," Energy, Elsevier, vol. 283(C).
    10. Fabrizio Reale & Patrizio Massoli, 2024. "A Hybrid Energy System Based on Externally Fired Micro Gas Turbines, Waste Heat Recovery and Gasification Systems: An Energetic and Exergetic Performance Analysis," Energies, MDPI, vol. 17(15), pages 1-16, July.
    11. Vittorio Bonasio & Silvia Ravelli, 2022. "Performance Analysis of an Ammonia-Fueled Micro Gas Turbine," Energies, MDPI, vol. 15(11), pages 1-18, May.
    12. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    13. Ronelly De Souza & Emanuele Nadalon & Melchiorre Casisi & Mauro Reini, 2022. "Optimal Sharing Electricity and Thermal Energy Integration for an Energy Community in the Perspective of 100% RES Scenario," Sustainability, MDPI, vol. 14(16), pages 1-39, August.
    14. Sharafian, Amir & Blomerus, Paul & Mérida, Walter, 2019. "Natural gas as a ship fuel: Assessment of greenhouse gas and air pollutant reduction potential," Energy Policy, Elsevier, vol. 131(C), pages 332-346.
    15. Laith Mustafa & Rafał Ślefarski & Radosław Jankowski, 2024. "Thermodynamic Analysis of Gas Turbine Systems Fueled by a CH 4 /H 2 Mixture," Sustainability, MDPI, vol. 16(2), pages 1-15, January.
    16. Hussein M. Maghrabie & Abdul Ghani Olabi & Ahmed Rezk & Ali Radwan & Abdul Hai Alami & Mohammad Ali Abdelkareem, 2023. "Energy Storage for Water Desalination Systems Based on Renewable Energy Resources," Energies, MDPI, vol. 16(7), pages 1-34, March.
    17. George N. Sakalis & George J. Tzortzis & Christos A. Frangopoulos, 2019. "Intertemporal Static and Dynamic Optimization of Synthesis, Design, and Operation of Integrated Energy Systems of Ships," Energies, MDPI, vol. 12(5), pages 1-50, March.
    18. Geoffrey P. Hammond & Adam A. Titley, 2022. "Small-Scale Combined Heat and Power Systems: The Prospects for a Distributed Micro-Generator in the ‘Net-Zero’ Transition within the UK," Energies, MDPI, vol. 15(16), pages 1-32, August.
    19. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
    20. Yong-Hoon Im, 2022. "Assessment of the Technological Sustainability of the Tri-Generation Model in the Era of Climate Change: A Case Study of Terminal Complexes," Energies, MDPI, vol. 15(14), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8293-:d:964935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.