IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v343y2023ics0306261923005755.html
   My bibliography  Save this article

Investigation of hybrid power plant configurations for an offshore vessel with co-simulation approach

Author

Listed:
  • Bagherabadi, Kamyar Maleki
  • Skjong, Stian
  • Bruinsma, Jogchum
  • Pedersen, Eilif

Abstract

This work presents a full-system simulator consisting of a generic power system integrated with a vessel model and real-time capabilities. The whole system simulation facilitates evaluating the overall system performance by considering components’ interactions according to the maneuvering and environmental effects. Indeed, flexibility in the configuration and size of the power system enables the investigation of different concepts according to various maneuvering scenarios. Co-simulation approach is employed to integrate the models with various domains effectively. In addition, the bond graph modeling strategy as a power based method is used. The developed power system contains a diesel genset, a PEMFC, a battery with average electrical components, and a power management system. The configuration of the power system and size of power sources are modifiable. Various hybrid configurations and power capacities can be designed with validated power sources against marine vendors. In addition, the integrated offshore supply vessel with Dynamic Positioning (DP) and cruise controller and sea state forces induces the corresponding load demand of the operation to the power system. In summary, different operation scenarios with sea states, the thrusters’ states and allocation algorithm, DC link voltage, power electrical converters controller, and fuel consummations are captured in one model framework. To demonstrate the application of the model and emphasis the importance of total system simulation, three power system configurations are designed and simulated with two operational modes of DP and cruise with various sea states.

Suggested Citation

  • Bagherabadi, Kamyar Maleki & Skjong, Stian & Bruinsma, Jogchum & Pedersen, Eilif, 2023. "Investigation of hybrid power plant configurations for an offshore vessel with co-simulation approach," Applied Energy, Elsevier, vol. 343(C).
  • Handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005755
    DOI: 10.1016/j.apenergy.2023.121211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923005755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Díaz-de-Baldasano, Maria C. & Mateos, Francisco J. & Núñez-Rivas, Luis R. & Leo, Teresa J., 2014. "Conceptual design of offshore platform supply vessel based on hybrid diesel generator-fuel cell power plant," Applied Energy, Elsevier, vol. 116(C), pages 91-100.
    2. Bjørnar Aas & Øyvind Halskau Sr & Stein W Wallace, 2009. "The role of supply vessels in offshore logistics," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(3), pages 302-325, September.
    3. Jeong, Byongug & Oguz, Elif & Wang, Haibin & Zhou, Peilin, 2018. "Multi-criteria decision-making for marine propulsion: Hybrid, diesel electric and diesel mechanical systems from cost-environment-risk perspectives," Applied Energy, Elsevier, vol. 230(C), pages 1065-1081.
    4. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    5. Zhu, Jianyun & Chen, Li & Wang, Bin & Xia, Lijuan, 2018. "Optimal design of a hybrid electric propulsive system for an anchor handling tug supply vessel," Applied Energy, Elsevier, vol. 226(C), pages 423-436.
    6. César O. Peralta P. & Giovani T. T. Vieira & Simon Meunier & Rodrigo J. Vale & Mauricio B. C. Salles & Bruno S. Carmo, 2019. "Evaluation of the CO 2 Emissions Reduction Potential of Li-ion Batteries in Ship Power Systems," Energies, MDPI, vol. 12(3), pages 1-19, January.
    7. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
    2. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    3. Giovani T. T. Vieira & Derick Furquim Pereira & Seyed Iman Taheri & Khalid S. Khan & Mauricio B. C. Salles & Josep M. Guerrero & Bruno S. Carmo, 2022. "Optimized Configuration of Diesel Engine-Fuel Cell-Battery Hybrid Power Systems in a Platform Supply Vessel to Reduce CO 2 Emissions," Energies, MDPI, vol. 15(6), pages 1-34, March.
    4. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    5. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Wang, Zhuang & Chen, Li & Wang, Bin & Huang, Lianzhong & Wang, Kai & Ma, Ranqi, 2023. "Integrated optimization of speed schedule and energy management for a hybrid electric cruise ship considering environmental factors," Energy, Elsevier, vol. 282(C).
    7. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    8. Nivolianiti, Evaggelia & Karnavas, Yannis L. & Charpentier, Jean-Frederic, 2024. "Energy management of shipboard microgrids integrating energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Mohsen Banaei & Fatemeh Ghanami & Mehdi Rafiei & Jalil Boudjadar & Mohammad-Hassan Khooban, 2020. "Energy Management of Hybrid Diesel/Battery Ships in Multidisciplinary Emission Policy Areas," Energies, MDPI, vol. 13(16), pages 1-16, August.
    10. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Inal, Omer Berkehan & Charpentier, Jean-Frédéric & Deniz, Cengiz, 2022. "Hybrid power and propulsion systems for ships: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Zhu, Jianyun & Chen, Li & Wang, Bin & Xia, Lijuan, 2018. "Optimal design of a hybrid electric propulsive system for an anchor handling tug supply vessel," Applied Energy, Elsevier, vol. 226(C), pages 423-436.
    13. Magdalena Kunicka & Wojciech Litwin, 2019. "Energy Demand of Short-Range Inland Ferry with Series Hybrid Propulsion Depending on the Navigation Strategy," Energies, MDPI, vol. 12(18), pages 1-13, September.
    14. Perčić, Maja & Vladimir, Nikola & Jovanović, Ivana & Koričan, Marija, 2022. "Application of fuel cells with zero-carbon fuels in short-sea shipping," Applied Energy, Elsevier, vol. 309(C).
    15. Kaiser, Mark J., 2015. "Offshore Service Vessel activity forecast and regulatory modeling in the U.S. Gulf of Mexico, 2012–2017," Marine Policy, Elsevier, vol. 57(C), pages 132-146.
    16. Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
    17. Wang, Jinggai & Li, Huanhuan & Yang, Zaili & Ge, Ying-En, 2024. "Shore power for reduction of shipping emission in port: A bibliometric analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    18. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    19. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Miretti, Federico & Misul, Daniela & Gennaro, Giulio & Ferrari, Antonio, 2022. "Hybridizing waterborne transport: Modeling and simulation of low-emissions hybrid waterbuses for the city of Venice," Energy, Elsevier, vol. 244(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.