Review of the Estimation Methods of Energy Consumption for Battery Electric Buses
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Apostolaki-Iosifidou, Elpiniki & Codani, Paul & Kempton, Willett, 2017. "Measurement of power loss during electric vehicle charging and discharging," Energy, Elsevier, vol. 127(C), pages 730-742.
- Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Majlan, E.H. & Wan Daud, W.R., 2015. "A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 802-814.
- Ribau, João P. & Silva, Carla M. & Sousa, João M.C., 2014. "Efficiency, cost and life cycle CO2 optimization of fuel cell hybrid and plug-in hybrid urban buses," Applied Energy, Elsevier, vol. 129(C), pages 320-335.
- Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
- Jari Vepsäläinen & Antti Ritari & Antti Lajunen & Klaus Kivekäs & Kari Tammi, 2018. "Energy Uncertainty Analysis of Electric Buses," Energies, MDPI, vol. 11(12), pages 1-29, November.
- Michael Wolinetz & Jonn Axsen & Jotham Peters & Curran Crawford, 2018. "Simulating the value of electric-vehicle–grid integration using a behaviourally realistic model," Nature Energy, Nature, vol. 3(2), pages 132-139, February.
- Cedric De Cauwer & Wouter Verbeke & Thierry Coosemans & Saphir Faid & Joeri Van Mierlo, 2017. "A Data-Driven Method for Energy Consumption Prediction and Energy-Efficient Routing of Electric Vehicles in Real-World Conditions," Energies, MDPI, vol. 10(5), pages 1-18, May.
- Oliwia Pietrzak & Krystian Pietrzak, 2021. "The Economic Effects of Electromobility in Sustainable Urban Public Transport," Energies, MDPI, vol. 14(4), pages 1-28, February.
- Yajing Gao & Shixiao Guo & Jiafeng Ren & Zheng Zhao & Ali Ehsan & Yanan Zheng, 2018. "An Electric Bus Power Consumption Model and Optimization of Charging Scheduling Concerning Multi-External Factors," Energies, MDPI, vol. 11(8), pages 1-17, August.
- Gao, Zhiming & Lin, Zhenhong & LaClair, Tim J. & Liu, Changzheng & Li, Jan-Mou & Birky, Alicia K. & Ward, Jacob, 2017. "Battery capacity and recharging needs for electric buses in city transit service," Energy, Elsevier, vol. 122(C), pages 588-600.
- Rogge, Matthias & van der Hurk, Evelien & Larsen, Allan & Sauer, Dirk Uwe, 2018. "Electric bus fleet size and mix problem with optimization of charging infrastructure," Applied Energy, Elsevier, vol. 211(C), pages 282-295.
- Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
- Zhou, Boya & Wu, Ye & Zhou, Bin & Wang, Renjie & Ke, Wenwei & Zhang, Shaojun & Hao, Jiming, 2016. "Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions," Energy, Elsevier, vol. 96(C), pages 603-613.
- Correa, G. & Muñoz, P. & Falaguerra, T. & Rodriguez, C.R., 2017. "Performance comparison of conventional, hybrid, hydrogen and electric urban buses using well to wheel analysis," Energy, Elsevier, vol. 141(C), pages 537-549.
- Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Thanikanti Sudhakar Babu & Yap Hoon & Majid A. Abdullah & Ameer Alhasan & Ammar Al-Sharaa, 2021. "Electric Buses in Malaysia: Policies, Innovations, Technologies and Life Cycle Evaluations," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
- Torchio, Marco F. & Santarelli, Massimo G., 2010. "Energy, environmental and economic comparison of different powertrain/fuel options using well-to-wheels assessment, energy and external costs – European market analysis," Energy, Elsevier, vol. 35(10), pages 4156-4171.
- Anna Brdulak & Grażyna Chaberek & Jacek Jagodziński, 2020. "Development Forecasts for the Zero-Emission Bus Fleet in Servicing Public Transport in Chosen EU Member Countries," Energies, MDPI, vol. 13(16), pages 1-20, August.
- Suh, In-Soo & Lee, Minyoung & Kim, Jedok & Oh, Sang Taek & Won, Jong-Phil, 2015. "Design and experimental analysis of an efficient HVAC (heating, ventilation, air-conditioning) system on an electric bus with dynamic on-road wireless charging," Energy, Elsevier, vol. 81(C), pages 262-273.
- Vincent Barthel & Jonas Schlund & Philipp Landes & Veronika Brandmeier & Marco Pruckner, 2021. "Analyzing the Charging Flexibility Potential of Different Electric Vehicle Fleets Using Real-World Charging Data," Energies, MDPI, vol. 14(16), pages 1-16, August.
- Feng Mao & Zhiheng Li & Kai Zhang, 2021. "A Comparison of Carbon Dioxide Emissions between Battery Electric Buses and Conventional Diesel Buses," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
- Vepsäläinen, Jari & Otto, Kevin & Lajunen, Antti & Tammi, Kari, 2019. "Computationally efficient model for energy demand prediction of electric city bus in varying operating conditions," Energy, Elsevier, vol. 169(C), pages 433-443.
- Lajunen, Antti & Lipman, Timothy, 2016. "Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses," Energy, Elsevier, vol. 106(C), pages 329-342.
- Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
- Mahmoud, Moataz & Garnett, Ryan & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Electric buses: A review of alternative powertrains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 673-684.
- Gallet, Marc & Massier, Tobias & Hamacher, Thomas, 2018. "Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks," Applied Energy, Elsevier, vol. 230(C), pages 344-356.
- Ke, Bwo-Ren & Chung, Chen-Yuan & Chen, Yen-Chang, 2016. "Minimizing the costs of constructing an all plug-in electric bus transportation system: A case study in Penghu," Applied Energy, Elsevier, vol. 177(C), pages 649-660.
- Yuhuan Liu & Enjian Yao & Muyang Lu & Ling Yuan, 2019. "Regional Electric Bus Driving Plan Optimization Algorithm considering Charging Time Window," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-9, October.
- Piotr Wróblewski & Wojciech Drożdż & Wojciech Lewicki & Paweł Miązek, 2021. "Methodology for Assessing the Impact of Aperiodic Phenomena on the Energy Balance of Propulsion Engines in Vehicle Electromobility Systems for Given Areas," Energies, MDPI, vol. 14(8), pages 1-24, April.
- Andrzej Łebkowski, 2019. "Studies of Energy Consumption by a City Bus Powered by a Hybrid Energy Storage System in Variable Road Conditions," Energies, MDPI, vol. 12(5), pages 1-39, March.
- Dan-Bi Bak & Jae-Seok Bak & Sung-Yul Kim, 2018. "Strategies for Implementing Public Service Electric Bus Lines by Charging Type in Daegu Metropolitan City, South Korea," Sustainability, MDPI, vol. 10(10), pages 1-16, September.
- Zeyuan Song & Yingqi Liu & Hongwei Gao & Suxiu Li, 2020. "The Underlying Reasons behind the Development of Public Electric Buses in China: The Beijing Case," Sustainability, MDPI, vol. 12(2), pages 1-16, January.
- Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
- De Filippo, Giovanni & Marano, Vincenzo & Sioshansi, Ramteen, 2014. "Simulation of an electric transportation system at The Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1686-1691.
- Sorrentino, Marco & Rizzo, Gianfranco & Sorrentino, Luca, 2014. "A study aimed at assessing the potential impact of vehicle electrification on grid infrastructure and road-traffic green house emissions," Applied Energy, Elsevier, vol. 120(C), pages 31-40.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiaoyu Li & Tengyuan Wang & Jiaxu Li & Yong Tian & Jindong Tian, 2022. "Energy Consumption Estimation for Electric Buses Based on a Physical and Data-Driven Fusion Model," Energies, MDPI, vol. 15(11), pages 1-17, June.
- Mohammad Shadnam Zarbil & Abolfazl Vahedi & Hossein Azizi Moghaddam & Pavel Aleksandrovich Khlyupin, 2022. "Design and Sizing of Electric Bus Flash Charger Based on a Flywheel Energy Storage System: A Case Study," Energies, MDPI, vol. 15(21), pages 1-23, October.
- Kinga Stecuła & Piotr Olczak & Paweł Kamiński & Dominika Matuszewska & Hai Duong Duc, 2022. "Towards Sustainable Transport: Techno-Economic Analysis of Investing in Hydrogen Buses in Public Transport in the Selected City of Poland," Energies, MDPI, vol. 15(24), pages 1-14, December.
- Jacek Trębecki & Joanna Przybylska & Waldemar Rydzak & Miguel Afonso Sellitto & Joanna Oleśków-Szłapka, 2022. "Activities Related to an Electromobility Strategy as a Part of Low Carbon Energy Transition: A Survey in Polish Communes," Energies, MDPI, vol. 15(11), pages 1-13, May.
- Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
- Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
- Lim, Lek Keng & Muis, Zarina Ab & Ho, Wai Shin & Hashim, Haslenda & Bong, Cassendra Phun Chien, 2023. "Review of the energy forecasting and scheduling model for electric buses," Energy, Elsevier, vol. 263(PD).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ma, Xiaolei & Miao, Ran & Wu, Xinkai & Liu, Xianglong, 2021. "Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing," Energy, Elsevier, vol. 216(C).
- Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Mustafa Hamurcu & Tamer Eren, 2020. "Electric Bus Selection with Multicriteria Decision Analysis for Green Transportation," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
- Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2020. "A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies," Applied Energy, Elsevier, vol. 261(C).
- Hatem Abdelaty & Moataz Mohamed, 2021. "A Prediction Model for Battery Electric Bus Energy Consumption in Transit," Energies, MDPI, vol. 14(10), pages 1-26, May.
- Saadon Al-Ogaili, Ali & Ramasamy, Agileswari & Juhana Tengku Hashim, Tengku & Al-Masri, Ahmed N. & Hoon, Yap & Neamah Jebur, Mustafa & Verayiah, Renuga & Marsadek, Marayati, 2020. "Estimation of the energy consumption of battery driven electric buses by integrating digital elevation and longitudinal dynamic models: Malaysia as a case study," Applied Energy, Elsevier, vol. 280(C).
- Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2018. "Assessing life cycle impacts and the risk and uncertainty of alternative bus technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 569-579.
- Xinkuo Xu & Liyan Han, 2020. "Operational Lifecycle Carbon Value of Bus Electrification in Macau," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
- Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
- Mahmoud, Moataz & Garnett, Ryan & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Electric buses: A review of alternative powertrains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 673-684.
- Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2022. "Energy consumption and battery sizing for different types of electric bus service," Energy, Elsevier, vol. 239(PE).
- Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
- Gallet, Marc & Massier, Tobias & Hamacher, Thomas, 2018. "Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks," Applied Energy, Elsevier, vol. 230(C), pages 344-356.
- Brinkel, Nico & Zijlstra, Marle & van Bezu, Ronald & van Twuijver, Tim & Lampropoulos, Ioannis & van Sark, Wilfried, 2023. "A comparative analysis of charging strategies for battery electric buses in wholesale electricity and ancillary services markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
- Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
- Basma, Hussein & Haddad, Marc & Mansour, Charbel & Nemer, Maroun & Stabat, Pascal, 2022. "Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris," Research in Transportation Economics, Elsevier, vol. 95(C).
- Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2023. "The economics of public transport electrification: A case study from Victoria, Australia," Energy Economics, Elsevier, vol. 120(C).
- Teresa Pamuła & Wiesław Pamuła, 2020. "Estimation of the Energy Consumption of Battery Electric Buses for Public Transport Networks Using Real-World Data and Deep Learning," Energies, MDPI, vol. 13(9), pages 1-17, May.
- Jiang, Junyu & Yu, Yuanbin & Min, Haitao & Cao, Qiming & Sun, Weiyi & Zhang, Zhaopu & Luo, Chunqi, 2023. "Trip-level energy consumption prediction model for electric bus combining Markov-based speed profile generation and Gaussian processing regression," Energy, Elsevier, vol. 263(PD).
- Li, Pengshun & Zhang, Yuhang & Zhang, Yi & Zhang, Yi & Zhang, Kai, 2021. "Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data," Applied Energy, Elsevier, vol. 298(C).
More about this item
Keywords
battery electric buses; well-to-wheel (WTW) model; energy consumption forecast; transportation networks; data analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7578-:d:678107. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.