IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v169y2019icp433-443.html
   My bibliography  Save this article

Computationally efficient model for energy demand prediction of electric city bus in varying operating conditions

Author

Listed:
  • Vepsäläinen, Jari
  • Otto, Kevin
  • Lajunen, Antti
  • Tammi, Kari

Abstract

The uncertainty of operating conditions such as weather and payload cause variations in the energy demand of electric city buses. Uncertain variation in energy demand is a challenge in the design of charging systems and on-board energy storages. To predict the energy demand, a computationally efficient model is required for real-time applications. We present a novel approach to predict energy demand variation with a wide range of uncertain factors. A factor identification is carried out to recognize the range of variation in the operating conditions. A computationally efficient surrogate model is generated based on a previously developed numerical simulation model. The surrogate model is shown to be 10 000 times faster than the numerical model. The surrogate model output corresponds with the numerical model with less than 1% error. The energy demand of the surrogate model varied from 0.43 to 2.30 kWh/km, which is realistic in comparison to previous studies. Successful sensitivity analysis of the surrogate model revealed the most crucial factors. Uncertainty in temperature, rolling resistance and payload contributed most to the variation in energy demand. Variation in these factors should be taken into account when predicting energy consumption and while planning schedules for a bus network.

Suggested Citation

  • Vepsäläinen, Jari & Otto, Kevin & Lajunen, Antti & Tammi, Kari, 2019. "Computationally efficient model for energy demand prediction of electric city bus in varying operating conditions," Energy, Elsevier, vol. 169(C), pages 433-443.
  • Handle: RePEc:eee:energy:v:169:y:2019:i:c:p:433-443
    DOI: 10.1016/j.energy.2018.12.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218324307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    2. Francesco Bottiglione & Tommaso Contursi & Angelo Gentile & Giacomo Mantriota, 2014. "The Fuel Economy of Hybrid Buses: The Role of Ancillaries in Real Urban Driving," Energies, MDPI, vol. 7(7), pages 1-19, July.
    3. Chang-Soon Kang & Jong-Il Park & Mignon Park & Jaeho Baek, 2014. "Novel Modeling and Control Strategies for a HVAC System Including Carbon Dioxide Control," Energies, MDPI, vol. 7(6), pages 1-19, June.
    4. Björnsson, Lars-Henrik & Karlsson, Sten, 2016. "The potential for brake energy regeneration under Swedish conditions," Applied Energy, Elsevier, vol. 168(C), pages 75-84.
    5. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    6. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    7. Gao, Zhiming & Lin, Zhenhong & LaClair, Tim J. & Liu, Changzheng & Li, Jan-Mou & Birky, Alicia K. & Ward, Jacob, 2017. "Battery capacity and recharging needs for electric buses in city transit service," Energy, Elsevier, vol. 122(C), pages 588-600.
    8. Panchal, S. & Dincer, I. & Agelin-Chaab, M. & Fraser, R. & Fowler, M., 2016. "Experimental and simulated temperature variations in a LiFePO4-20Ah battery during discharge process," Applied Energy, Elsevier, vol. 180(C), pages 504-515.
    9. Jie Wu & Kun Li & Yifei Jiang & Qin Lv & Li Shang & Yihe Sun, 2011. "Large-Scale Battery System Development and User-Specific Driving Behavior Analysis for Emerging Electric-Drive Vehicles," Energies, MDPI, vol. 4(5), pages 1-22, April.
    10. Suh, In-Soo & Lee, Minyoung & Kim, Jedok & Oh, Sang Taek & Won, Jong-Phil, 2015. "Design and experimental analysis of an efficient HVAC (heating, ventilation, air-conditioning) system on an electric bus with dynamic on-road wireless charging," Energy, Elsevier, vol. 81(C), pages 262-273.
    11. Soylu, Seref, 2014. "The effects of urban driving conditions on the operating characteristics of conventional and hybrid electric city buses," Applied Energy, Elsevier, vol. 135(C), pages 472-482.
    12. Lajunen, Antti & Lipman, Timothy, 2016. "Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses," Energy, Elsevier, vol. 106(C), pages 329-342.
    13. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    14. Silva, R. & Pérez, M. & Berenguel, M. & Valenzuela, L. & Zarza, E., 2014. "Uncertainty and global sensitivity analysis in the design of parabolic-trough direct steam generation plants for process heat applications," Applied Energy, Elsevier, vol. 121(C), pages 233-244.
    15. Cedric De Cauwer & Joeri Van Mierlo & Thierry Coosemans, 2015. "Energy Consumption Prediction for Electric Vehicles Based on Real-World Data," Energies, MDPI, vol. 8(8), pages 1-21, August.
    16. Matthias Rogge & Sebastian Wollny & Dirk Uwe Sauer, 2015. "Fast Charging Battery Buses for the Electrification of Urban Public Transport—A Feasibility Study Focusing on Charging Infrastructure and Energy Storage Requirements," Energies, MDPI, vol. 8(5), pages 1-20, May.
    17. Yang, Chao & Chen, Anthony & Xu, Xiangdong & Wong, S.C., 2013. "Sensitivity-based uncertainty analysis of a combined travel demand model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 225-244.
    18. Schoch, Jennifer & Gaerttner, Johannes & Schuller, Alexander & Setzer, Thomas, 2018. "Enhancing electric vehicle sustainability through battery life optimal charging," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 1-18.
    19. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.
    20. Saltelli, A. & Andres, T. H. & Homma, T., 1993. "Sensitivity analysis of model output : An investigation of new techniques," Computational Statistics & Data Analysis, Elsevier, vol. 15(2), pages 211-238, February.
    21. Jaguemont, J. & Boulon, L. & Dubé, Y., 2016. "A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures," Applied Energy, Elsevier, vol. 164(C), pages 99-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Morteza Moghimi & Thomas Aaron Gulliver & Ilamparithi Thirumai Chelvan, 2024. "Energy Management in Modern Buildings Based on Demand Prediction and Machine Learning—A Review," Energies, MDPI, vol. 17(3), pages 1-20, January.
    2. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    3. Xiaoyu Li & Tengyuan Wang & Jiaxu Li & Yong Tian & Jindong Tian, 2022. "Energy Consumption Estimation for Electric Buses Based on a Physical and Data-Driven Fusion Model," Energies, MDPI, vol. 15(11), pages 1-17, June.
    4. Sebastian Angermeier & Jonas Ketterer & Christian Karcher, 2020. "Liquid-Based Battery Temperature Control of Electric Buses," Energies, MDPI, vol. 13(19), pages 1-20, September.
    5. Zacharof, Nikiforos & Özener, Orkun & Broekaert, Stijn & Özkan, Muammer & Samaras, Zissis & Fontaras, Georgios, 2023. "The impact of bus passenger occupancy, heating ventilation and air conditioning systems on energy consumption and CO2 emissions," Energy, Elsevier, vol. 272(C).
    6. Hatem Abdelaty & Moataz Mohamed, 2021. "A Prediction Model for Battery Electric Bus Energy Consumption in Transit," Energies, MDPI, vol. 14(10), pages 1-26, May.
    7. Ma, Xiaolei & Miao, Ran & Wu, Xinkai & Liu, Xianglong, 2021. "Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing," Energy, Elsevier, vol. 216(C).
    8. Xinkuo Xu & Xiaofeng Lv & Liyan Han, 2019. "Carbon Asset of Electrification: Valuing the Transition from Fossil Fuel-Powered Buses to Battery Electric Buses in Beijing," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    9. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
    10. Roman Michael Sennefelder & Rubén Martín-Clemente & Ramón González-Carvajal, 2023. "Energy Consumption Prediction of Electric City Buses Using Multiple Linear Regression," Energies, MDPI, vol. 16(11), pages 1-14, May.
    11. Xinkuo Xu & Liyan Han, 2020. "Operational Lifecycle Carbon Value of Bus Electrification in Macau," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    12. Viana-Fons, Joan Dídac & Payá, Jorge, 2024. "HVAC system operation, consumption and compressor size optimization in urban buses of Mediterranean cities," Energy, Elsevier, vol. 296(C).
    13. Bogdan Ovidiu Varga & Florin Mariasiu & Cristian Daniel Miclea & Ioan Szabo & Anamaria Andreea Sirca & Vlad Nicolae, 2020. "Direct and Indirect Environmental Aspects of an Electric Bus Fleet Under Service," Energies, MDPI, vol. 13(2), pages 1-12, January.
    14. Jiang, Junyu & Yu, Yuanbin & Min, Haitao & Cao, Qiming & Sun, Weiyi & Zhang, Zhaopu & Luo, Chunqi, 2023. "Trip-level energy consumption prediction model for electric bus combining Markov-based speed profile generation and Gaussian processing regression," Energy, Elsevier, vol. 263(PD).
    15. Brinkel, Nico & Zijlstra, Marle & van Bezu, Ronald & van Twuijver, Tim & Lampropoulos, Ioannis & van Sark, Wilfried, 2023. "A comparative analysis of charging strategies for battery electric buses in wholesale electricity and ancillary services markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    16. Teresa Pamuła & Wiesław Pamuła, 2020. "Estimation of the Energy Consumption of Battery Electric Buses for Public Transport Networks Using Real-World Data and Deep Learning," Energies, MDPI, vol. 13(9), pages 1-17, May.
    17. Hubert Maximilian Sistig & Philipp Sinhuber & Matthias Rogge & Dirk Uwe Sauer, 2024. "Optimizing Fleet Structure for Autonomous Electric Buses: A Route-Based Analysis in Aachen, Germany," Sustainability, MDPI, vol. 16(10), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jari Vepsäläinen & Antti Ritari & Antti Lajunen & Klaus Kivekäs & Kari Tammi, 2018. "Energy Uncertainty Analysis of Electric Buses," Energies, MDPI, vol. 11(12), pages 1-29, November.
    2. Zhang, Le & Wang, Shuaian & Qu, Xiaobo, 2021. "Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    3. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2022. "Energy consumption and battery sizing for different types of electric bus service," Energy, Elsevier, vol. 239(PE).
    4. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
    5. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    6. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    7. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    8. Bálint Csonka, 2021. "Optimization of Static and Dynamic Charging Infrastructure for Electric Buses," Energies, MDPI, vol. 14(12), pages 1-18, June.
    9. Li, Pengshun & Zhang, Yuhang & Zhang, Yi & Zhang, Yi & Zhang, Kai, 2021. "Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data," Applied Energy, Elsevier, vol. 298(C).
    10. Roman Michael Sennefelder & Rubén Martín-Clemente & Ramón González-Carvajal, 2023. "Energy Consumption Prediction of Electric City Buses Using Multiple Linear Regression," Energies, MDPI, vol. 16(11), pages 1-14, May.
    11. Ma, Xiaolei & Miao, Ran & Wu, Xinkai & Liu, Xianglong, 2021. "Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing," Energy, Elsevier, vol. 216(C).
    12. Zhao, Yang & Wang, Zhenpo & Shen, Zuo-Jun Max & Zhang, Lei & Dorrell, David G. & Sun, Fengchun, 2022. "Big data-driven decoupling framework enabling quantitative assessments of electric vehicle performance degradation," Applied Energy, Elsevier, vol. 327(C).
    13. Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    14. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Li, Pengshun & Zhang, Yi & Zhang, Yi & Zhang, Kai & Jiang, Mengyan, 2021. "The effects of dynamic traffic conditions, route characteristics and environmental conditions on trip-based electricity consumption prediction of electric bus," Energy, Elsevier, vol. 218(C).
    16. Gallet, Marc & Massier, Tobias & Hamacher, Thomas, 2018. "Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks," Applied Energy, Elsevier, vol. 230(C), pages 344-356.
    17. Guschinsky, Nikolai & Kovalyov, Mikhail Y. & Pesch, Erwin & Rozin, Boris, 2023. "Cost minimizing decisions on equipment and charging schedule for electric buses in a single depot," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    18. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2018. "Assessing life cycle impacts and the risk and uncertainty of alternative bus technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 569-579.
    19. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    20. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:169:y:2019:i:c:p:433-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.