IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i1p406-418.html
   My bibliography  Save this article

Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations

Author

Listed:
  • Ou, Xunmin
  • Zhang, Xiliang
  • Chang, Shiyan

Abstract

The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R&D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources.

Suggested Citation

  • Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:1:p:406-418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00714-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jimin & Melaina, Marc W., 2006. "Transition to hydrogen-based transportation in China: Lessons learned from alternative fuel vehicle programs in the United States and China," Energy Policy, Elsevier, vol. 34(11), pages 1299-1309, July.
    2. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Ke & Zhang, Ying & Lu, Xuedu, 2008. "Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020," Energy Policy, Elsevier, vol. 36(3), pages 1181-1194, March.
    3. Hekkert, Marko P. & Hendriks, Franka H. J. F. & Faaij, Andre P. C. & Neelis, Maarten L., 2005. "Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development," Energy Policy, Elsevier, vol. 33(5), pages 579-594, March.
    4. Gan, Lin, 2003. "Globalization of the automobile industry in China: dynamics and barriers in greening of the road transportation," Energy Policy, Elsevier, vol. 31(6), pages 537-551, May.
    5. Chen, Fengzhen & Fernandes, T.R.C. & Yetano Roche, María & da Graça Carvalho, Maria, 2007. "Investigation of challenges to the utilization of fuel cell buses in the EU vs transition economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 357-364, February.
    6. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    7. Collantes, Gustavo, 2008. "The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States," Energy Policy, Elsevier, vol. 36(3), pages 1059-1073, March.
    8. Jaramillo, Paulina & Samaras, Constantine & Wakeley, Heather & Meisterling, Kyle, 2009. "Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways," Energy Policy, Elsevier, vol. 37(7), pages 2689-2695, July.
    9. Ally, Jamie & Pryor, Trevor, 2009. "Accelerating hydrogen implementation by mass production of a hydrogen bus chassis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 616-624, April.
    10. Collantes, Gustavo Oscar, 2008. "The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States," Institute of Transportation Studies, Working Paper Series qt91f3d1ns, Institute of Transportation Studies, UC Davis.
    11. Tzeng, Gwo-Hshiung & Lin, Cheng-Wei & Opricovic, Serafim, 2005. "Multi-criteria analysis of alternative-fuel buses for public transportation," Energy Policy, Elsevier, vol. 33(11), pages 1373-1383, July.
    12. Stepp, Matthew D. & Winebrake, James J. & Hawker, J. Scott & Skerlos, Steven J., 2009. "Greenhouse gas mitigation policies and the transportation sector: The role of feedback effects on policy effectiveness," Energy Policy, Elsevier, vol. 37(7), pages 2774-2787, July.
    13. Wang, Hewu & Ouyang, Minggao, 2007. "Transition strategy of the transportation energy and powertrain in China," Energy Policy, Elsevier, vol. 35(4), pages 2313-2319, April.
    14. Collantes, Gustavo & Sperling, Daniel, 2008. "The origin of California's zero emission vehicle mandate," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1302-1313, December.
    15. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
    16. Karamangil, M. Ihsan, 2007. "Development of the auto gas and LPG-powered vehicle sector in Turkey: A statistical case study of the sector for Bursa," Energy Policy, Elsevier, vol. 35(1), pages 640-649, January.
    17. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt2k09h787, Institute of Transportation Studies, UC Davis.
    18. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    19. Zhang, Liang & Huang, Zhen, 2007. "Life cycle study of coal-based dimethyl ether as vehicle fuel for urban bus in China," Energy, Elsevier, vol. 32(10), pages 1896-1904.
    20. Solomon, Barry D. & Banerjee, Abhijit, 2006. "A global survey of hydrogen energy research, development and policy," Energy Policy, Elsevier, vol. 34(7), pages 781-792, May.
    21. Solomon, Barry D. & Banerjee, Abhijit, 2006. "Erratum to "A global survey of hydrogen energy research, development and policy": [Energy Policy 34 (2006) 781-792]," Energy Policy, Elsevier, vol. 34(11), pages 1318-1208, July.
    22. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt92h7g194, Institute of Transportation Studies, UC Davis.
    23. Huang, Zhijia & Zhang, Xu, 2006. "Well-to-wheels analysis of hydrogen based fuel-cell vehicle pathways in Shanghai," Energy, Elsevier, vol. 31(4), pages 471-489.
    24. Collantes, Gustavo O, 2008. "The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States," Institute of Transportation Studies, Working Paper Series qt82j0z800, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Collantes, Gustavo & Melaina, Marc W., 2011. "The co-evolution of alternative fuel infrastructure and vehicles: A study of the experience of Argentina with compressed natural gas," Energy Policy, Elsevier, vol. 39(2), pages 664-675, February.
    2. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
    3. Pfoser, Sarah & Schauer, Oliver & Costa, Yasel, 2018. "Acceptance of LNG as an alternative fuel: Determinants and policy implications," Energy Policy, Elsevier, vol. 120(C), pages 259-267.
    4. Gilbert, Brett Anitra, 2012. "Creative destruction: Identifying its geographic origins," Research Policy, Elsevier, vol. 41(4), pages 734-742.
    5. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    6. Chunguang Bai & Behnam Fahimnia & Joseph Sarkis, 2017. "Sustainable transport fleet appraisal using a hybrid multi-objective decision making approach," Annals of Operations Research, Springer, vol. 250(2), pages 309-340, March.
    7. Malakoutirad, Mohammad & Bradley, Thomas H. & Hagen, Chris, 2015. "Design considerations for an engine-integral reciprocating natural gas compressor," Applied Energy, Elsevier, vol. 156(C), pages 129-137.
    8. Tianbo Wang & Lanchun Zhang & Qian Chen, 2020. "Effect of Valve Opening Manner and Sealing Method on the Steady Injection Characteristic of Gas Fuel Injector," Energies, MDPI, vol. 13(6), pages 1-12, March.
    9. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    10. Li, Weiqi & Dai, Yaping & Ma, Linwei & Hao, Han & Lu, Haiyan & Albinson, Rosemary & Li, Zheng, 2015. "Oil-saving pathways until 2030 for road freight transportation in China based on a cost-optimization model," Energy, Elsevier, vol. 86(C), pages 369-384.
    11. Larizzatti Zacharias, Luis Guilherme & Antunes Costa de Andrade, Ana Clara & Guichet, Xavier & Mouette, Dominique & Peyerl, Drielli, 2022. "Natural gas as a vehicular fuel in Brazil: Barriers and lessons to learn," Energy Policy, Elsevier, vol. 167(C).
    12. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    13. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    14. Lee, Yongseung & Kim, Chongman & Shin, Juneseuk, 2016. "A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach," Applied Energy, Elsevier, vol. 184(C), pages 438-449.
    15. Mallapragada, Dharik S. & Duan, Gang & Agrawal, Rakesh, 2014. "From shale gas to renewable energy based transportation solutions," Energy Policy, Elsevier, vol. 67(C), pages 499-507.
    16. Arteconi, A. & Polonara, F., 2013. "LNG as vehicle fuel and the problem of supply: The Italian case study," Energy Policy, Elsevier, vol. 62(C), pages 503-512.
    17. Mohammadreza Zolfagharian & Bob Walrave & A. Georges L. Romme & Rob Raven, 2020. "Toward the Dynamic Modeling of Transition Problems: The Case of Electric Mobility," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    18. Waller, Michael G. & Williams, Eric D. & Matteson, Schuyler W. & Trabold, Thomas A., 2014. "Current and theoretical maximum well-to-wheels exergy efficiency of options to power vehicles with natural gas," Applied Energy, Elsevier, vol. 127(C), pages 55-63.
    19. Ou, Xunmin & Yan, Xiaoyu & Zhang, Xiliang & Liu, Zhen, 2012. "Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China," Applied Energy, Elsevier, vol. 90(1), pages 218-224.
    20. Kelley, Scott & Kuby, Michael, 2013. "On the way or around the corner? Observed refueling choices of alternative-fuel drivers in Southern California," Journal of Transport Geography, Elsevier, vol. 33(C), pages 258-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:1:p:406-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.