IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6117-d643298.html
   My bibliography  Save this article

Optimal Power Flow Solution of Wind-Integrated Power System Using Novel Metaheuristic Method

Author

Listed:
  • Amr Khaled Khamees

    (Engineering Physics and Mathematics Department, Ain Shams University, Cairo 11517, Egypt)

  • Almoataz Y. Abdelaziz

    (Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt)

  • Makram R. Eskaros

    (Engineering Physics and Mathematics Department, Ain Shams University, Cairo 11517, Egypt)

  • Adel El-Shahat

    (Energy Technology Program, School of Engineering Technology, Purdue University, West Lafayette, IN 46202, USA)

  • Mahmoud A. Attia

    (Electrical Power & Machines Department, Ain Shams University, Cairo 11517, Egypt)

Abstract

Wind energy is particularly significant in the power system today since it is a cheap and clean power source. The unpredictability of wind speed leads to uncertainty in devolved power which increases the difficulty in wind energy system operation. This paper presents a stochastic optimal power flow (SCOPF) for obtaining the best scheduled power from wind farms while lowering total operational costs. A novel metaheuristics method called Aquila Optimizer (AO) is used to address the SCOPF problem due to its highly nonconvex and nonlinear nature. Wind speed is represented by the Weibull probability distribution function (PDF), which is used to anticipate the cost of wind-generated power from a wind farm based on scheduled power. Weibull parameters that provide the best match to wind data are estimated using the AO approach. The suggested wind generation cost model includes the opportunity costs of wind power underestimation and overestimation. Three IEEE systems (30, 57, and 118) are utilized to solve optimal power flow (OPF) using the AO method to prove the accuracy of this method, and results are compared with other metaheuristic methods. With six scenarios for the penalty and reverse cost coefficients, SCOPF is applied to a modified IEEE-30 bus system with two wind farms to obtain the optimal scheduled power from the two wind farms which reduces total operation cost.

Suggested Citation

  • Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Adel El-Shahat & Mahmoud A. Attia, 2021. "Optimal Power Flow Solution of Wind-Integrated Power System Using Novel Metaheuristic Method," Energies, MDPI, vol. 14(19), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6117-:d:643298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn & Rongrit Chatthaworn & Neville R. Watson, 2018. "A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems," Energies, MDPI, vol. 11(9), pages 1-21, August.
    2. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2015. "Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch," Renewable Energy, Elsevier, vol. 83(C), pages 188-202.
    3. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed A. A. Al-qaness & Ahmed A. Ewees & Mohamed Abd Elaziz & Ahmed H. Samak, 2022. "Wind Power Forecasting Using Optimized Dendritic Neural Model Based on Seagull Optimization Algorithm and Aquila Optimizer," Energies, MDPI, vol. 15(24), pages 1-14, December.
    2. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.
    3. Motaeb Eid Alshammari & Makbul A. M. Ramli & Ibrahim M. Mehedi, 2022. "Hybrid Chaotic Maps-Based Artificial Bee Colony for Solving Wind Energy-Integrated Power Dispatch Problem," Energies, MDPI, vol. 15(13), pages 1-26, June.
    4. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Ahmad H. Milyani, 2022. "Design of Aquila Optimization Heuristic for Identification of Control Autoregressive Systems," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    5. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Mahmoud A. Attia & Mariam A. Sameh, 2022. "Optimal Power Flow with Stochastic Renewable Energy Using Three Mixture Component Distribution Functions," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    6. Ganesh Sampatrao Patil & Anwar Mulla & Subhojit Dawn & Taha Selim Ustun, 2022. "Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market," Energies, MDPI, vol. 15(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Mahmoud A. Attia & Mariam A. Sameh, 2022. "Optimal Power Flow with Stochastic Renewable Energy Using Three Mixture Component Distribution Functions," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    2. Shahenda Sarhan & Ragab El-Sehiemy & Amlak Abaza & Mona Gafar, 2022. "Turbulent Flow of Water-Based Optimization for Solving Multi-Objective Technical and Economic Aspects of Optimal Power Flow Problems," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    3. Sangeeta Pant & Anuj Kumar & Mangey Ram, 2017. "Flower pollination algorithm development: a state of art review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1858-1866, November.
    4. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    5. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    6. Ziad M. Ali & Shady H. E. Abdel Aleem & Ahmed I. Omar & Bahaa Saad Mahmoud, 2022. "Economical-Environmental-Technical Operation of Power Networks with High Penetration of Renewable Energy Systems Using Multi-Objective Coronavirus Herd Immunity Algorithm," Mathematics, MDPI, vol. 10(7), pages 1-43, April.
    7. Chen, Dongwen & Hu, Xiao & Li, Yong & Abbas, Zulkarnain & Wang, Ruzhu & Li, Dehong, 2023. "Nodal conservation principle of potential energy flow analysis for energy flow calculation in energy internet," Energy, Elsevier, vol. 263(PA).
    8. Jamal, Raheela & Zhang, Junzhe & Men, Baohui & Khan, Noor Habib & Ebeed, Mohamed & Jamal, Tanzeela & Mohamed, Emad A., 2024. "Chaotic-quasi-oppositional-phasor based multi populations gorilla troop optimizer for optimal power flow solution," Energy, Elsevier, vol. 301(C).
    9. O., Yugeswar Reddy & J., Jithendranath & Chakraborty, Ajoy Kumar & Guerrero, Josep M., 2022. "Stochastic optimal power flow in islanded DC microgrids with correlated load and solar PV uncertainties," Applied Energy, Elsevier, vol. 307(C).
    10. Patwal, Rituraj Singh & Narang, Nitin & Garg, Harish, 2018. "A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units," Energy, Elsevier, vol. 142(C), pages 822-837.
    11. Jiani Heng & Chen Wang & Xuejing Zhao & Liye Xiao, 2016. "Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting," Sustainability, MDPI, vol. 8(3), pages 1-25, March.
    12. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    13. Xiao, Hui & Cao, Minhao, 2020. "Balancing the demand and supply of a power grid system via reliability modeling and maintenance optimization," Energy, Elsevier, vol. 210(C).
    14. Phiraphat Antarasee & Suttichai Premrudeepreechacharn & Apirat Siritaratiwat & Sirote Khunkitti, 2022. "Optimal Design of Electric Vehicle Fast-Charging Station’s Structure Using Metaheuristic Algorithms," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    15. Shahenda Sarhan & Abdullah Mohamed Shaheen & Ragab A. El-Sehiemy & Mona Gafar, 2022. "An Enhanced Slime Mould Optimizer That Uses Chaotic Behavior and an Elitist Group for Solving Engineering Problems," Mathematics, MDPI, vol. 10(12), pages 1-30, June.
    16. Qun Niu & Ming You & Zhile Yang & Yang Zhang, 2021. "Economic Emission Dispatch Considering Renewable Energy Resources—A Multi-Objective Cross Entropy Optimization Approach," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    17. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn, 2021. "Multi-Objective Optimal Power Flow Problems Based on Slime Mould Algorithm," Sustainability, MDPI, vol. 13(13), pages 1-21, July.
    18. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.
    19. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2016. "Hydro-thermal-wind scheduling employing novel ant lion optimization technique with composite ranking index," Renewable Energy, Elsevier, vol. 99(C), pages 18-34.
    20. Salil Madhav Dubey & Hari Mohan Dubey & Manjaree Pandit & Surender Reddy Salkuti, 2021. "Multiobjective Scheduling of Hybrid Renewable Energy System Using Equilibrium Optimization," Energies, MDPI, vol. 14(19), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6117-:d:643298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.