IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v271y2023ics0360544223003948.html
   My bibliography  Save this article

A vertical and horizontal crossover sine cosine algorithm with pattern search for optimal power flow in power systems

Author

Listed:
  • Weng, Xuemeng
  • Xuan, Ping
  • Heidari, Ali Asghar
  • Cai, Zhennao
  • Chen, Huiling
  • Mansour, Romany F.
  • Ragab, Mahmoud

Abstract

Most of the energy consumption is now being used to supply human demand for electricity, which has increased the burden of power system planning to some extent, and thus, researchers proposed solutions to the optimal power flow (OPF) problem. In such a background, flexible AC transmission system (FACTS) devices are widely used in modern power systems to alleviate human power demand and improve network congestion problems. This research proposes a better-quality sine cosine algorithm (CPSCA) based on a crossover mechanism and pattern search algorithm for optimizing multiple objectives, such as system generation cost and transmission losses when we have multiple types of FACTS devices in the power system. The proposed method uses sine and cosine theory and evolutionary strategy to continuously sample and update the framework and improve the quality of the solutions. The method uses a class of vertical and horizontal crossover operators and pattern-shifting techniques to find the optimal solution set. In addition, the Weibull probability density function was used in this study to model uncertainty in wind energy, while direct costs, penalty costs, and standby costs were considered in constructing the target model. Various types of FACTS devices, such as thyristor-controlled series compensators, thyristor-controlled phase shifters, and static reactive power compensators, are also inserted into the model as power in the target optimization problem. The proposed algorithm has experimented on an IEEE30 bus test system. Based on the experimental results, CPSCA achieves an optimal total cost of 806.0225 $/h. In terms of power loss of the bus system, CPSCA reduces the total power loss value from 2.042 MW to 1.41 MW compared to the original sine cosine algorithm, which is a 31% improvement and has an optimal power loss value. Therefore, the simulation results demonstrate that the proposed algorithm is an effective technique for optimizing the optimal power flow of the entire power system and FACTS equipment.

Suggested Citation

  • Weng, Xuemeng & Xuan, Ping & Heidari, Ali Asghar & Cai, Zhennao & Chen, Huiling & Mansour, Romany F. & Ragab, Mahmoud, 2023. "A vertical and horizontal crossover sine cosine algorithm with pattern search for optimal power flow in power systems," Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223003948
    DOI: 10.1016/j.energy.2023.127000
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223003948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biswas, Partha P. & Suganthan, P.N. & Qu, B.Y. & Amaratunga, Gehan A.J., 2018. "Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power," Energy, Elsevier, vol. 150(C), pages 1039-1057.
    2. Ara, A. Lashkar & Kazemi, A. & Niaki, S.A. Nabavi, 2011. "Optimal location of Hybrid Flow Controller considering modified steady-state model," Applied Energy, Elsevier, vol. 88(5), pages 1578-1585, May.
    3. Meng, Anbo & Zeng, Cong & Wang, Peng & Chen, De & Zhou, Tianmin & Zheng, Xiaoying & Yin, Hao, 2021. "A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem," Energy, Elsevier, vol. 225(C).
    4. AkbaiZadeh, MohammadReza & Niknam, Taher & Kavousi-Fard, Abdollah, 2021. "Adaptive robust optimization for the energy management of the grid-connected energy hubs based on hybrid meta-heuristic algorithm," Energy, Elsevier, vol. 235(C).
    5. Panda, Ambarish & Tripathy, M., 2015. "Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm," Energy, Elsevier, vol. 93(P1), pages 816-827.
    6. Lin, Q.G. & Huang, G.H., 2009. "A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty--A case study for the City of Waterloo,," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1836-1853, October.
    7. Yong Wang & Xuan Wen & Bing Gu & Fengkai Gao, 2022. "Power Scheduling Optimization Method of Wind-Hydrogen Integrated Energy System Based on the Improved AUKF Algorithm," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    8. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
    9. Leijiao Ge & Yuanliang Li & Yuanliang Li & Jun Yan & Yonghui Sun, 2022. "Smart Distribution Network Situation Awareness for High-Quality Operation and Maintenance: A Brief Review," Energies, MDPI, vol. 15(3), pages 1-24, January.
    10. Li, Shuijia & Gong, Wenyin & Hu, Chengyu & Yan, Xuesong & Wang, Ling & Gu, Qiong, 2021. "Adaptive constraint differential evolution for optimal power flow," Energy, Elsevier, vol. 235(C).
    11. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    12. Qin, Chun & Wang, Linqing & Han, Zhongyang & Zhao, Jun & Liu, Quanli, 2021. "Weighted directed graph based matrix modeling of integrated energy systems," Energy, Elsevier, vol. 214(C).
    13. Chen, Jiahao & Sun, Bing & Li, Yunfei & Jing, Ruipeng & Zeng, Yuan & Li, Minghao, 2022. "Credible capacity calculation method of distributed generation based on equal power supply reliability criterion," Renewable Energy, Elsevier, vol. 201(P1), pages 534-547.
    14. Leijiao Ge & Tianshuo Du & Changlu Li & Yuanliang Li & Jun Yan & Muhammad Umer Rafiq, 2022. "Virtual Collection for Distributed Photovoltaic Data: Challenges, Methodologies, and Applications," Energies, MDPI, vol. 15(23), pages 1-24, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monirul Islam Miskat & Protap Sarker & Hemal Chowdhury & Tamal Chowdhury & Md Salman Rahman & Nazia Hossain & Piyal Chowdhury & Sadiq M. Sait, 2023. "Current Scenario of Solar Energy Applications in Bangladesh: Techno-Economic Perspective, Policy Implementation, and Possibility of the Integration of Artificial Intelligence," Energies, MDPI, vol. 16(3), pages 1-27, February.
    2. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    3. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Alharthi, Mosleh M. & Ghoneim, Sherif S.M. & Ginidi, Ahmed R., 2021. "Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework," Energy, Elsevier, vol. 237(C).
    4. Rasheed Abdulkader & Hayder M. A. Ghanimi & Pankaj Dadheech & Meshal Alharbi & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly & Dhivya Swaminathan & Sudhakar Sengan, 2023. "Soft Computing in Smart Grid with Decentralized Generation and Renewable Energy Storage System Planning," Energies, MDPI, vol. 16(6), pages 1-24, March.
    5. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    6. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Mahmoud A. Attia & Mariam A. Sameh, 2022. "Optimal Power Flow with Stochastic Renewable Energy Using Three Mixture Component Distribution Functions," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    7. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    8. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    9. Qun Niu & Ming You & Zhile Yang & Yang Zhang, 2021. "Economic Emission Dispatch Considering Renewable Energy Resources—A Multi-Objective Cross Entropy Optimization Approach," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    10. Mahmoud A. Ali & Salah Kamel & Mohamed H. Hassan & Emad M. Ahmed & Mohana Alanazi, 2022. "Optimal Power Flow Solution of Power Systems with Renewable Energy Sources Using White Sharks Algorithm," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    11. Mahmoud El-Dabah & Mohamed A. Ebrahim & Ragab A. El-Sehiemy & Z. Alaas & M. M. Ramadan, 2022. "A Modified Whale Optimizer for Single- and Multi-Objective OPF Frameworks," Energies, MDPI, vol. 15(7), pages 1-18, March.
    12. Panda, Ambarish & Tripathy, M. & Barisal, A.K. & Prakash, T., 2017. "A modified bacteria foraging based optimal power flow framework for Hydro-Thermal-Wind generation system in the presence of STATCOM," Energy, Elsevier, vol. 124(C), pages 720-740.
    13. Zhang, XiaoWei & Yu, Xiaoping & Ye, Xinping & Pirouzi, Sasan, 2023. "Economic energy managementof networked flexi-renewable energy hubs according to uncertainty modeling by the unscented transformation method," Energy, Elsevier, vol. 278(PB).
    14. Zhang, Xiao & Wu, Zhi & Sun, Qirun & Gu, Wei & Zheng, Shu & Zhao, Jingtao, 2024. "Application and progress of artificial intelligence technology in the field of distribution network voltage Control:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    15. Ahmad Alzahrani & Ghulam Hafeez & Sajjad Ali & Sadia Murawwat & Muhammad Iftikhar Khan & Khalid Rehman & Azher M. Abed, 2023. "Multi-Objective Energy Optimization with Load and Distributed Energy Source Scheduling in the Smart Power Grid," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    16. S M Mezbahul Amin & Abul Hasnat & Nazia Hossain, 2023. "Designing and Analysing a PV/Battery System via New Resilience Indicators," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    17. Khaled Nusair & Feras Alasali, 2020. "Optimal Power Flow Management System for a Power Network with Stochastic Renewable Energy Resources Using Golden Ratio Optimization Method," Energies, MDPI, vol. 13(14), pages 1-46, July.
    18. Yuan, Xiaohui & Zhang, Binqiao & Wang, Pengtao & Liang, Ji & Yuan, Yanbin & Huang, Yuehua & Lei, Xiaohui, 2017. "Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm," Energy, Elsevier, vol. 122(C), pages 70-82.
    19. Sherif S. M. Ghoneim & Mohamed F. Kotb & Hany M. Hasanien & Mosleh M. Alharthi & Attia A. El-Fergany, 2021. "Cost Minimizations and Performance Enhancements of Power Systems Using Spherical Prune Differential Evolution Algorithm Including Modal Analysis," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    20. Hameedullah Zaheb & Habibullah Amiry & Mikaeel Ahmadi & Habibullah Fedayi & Sajida Amiry & Atsushi Yona, 2023. "Maximizing Annual Energy Yield in a Grid-Connected PV Solar Power Plant: Analysis of Seasonal Tilt Angle and Solar Tracking Strategies," Sustainability, MDPI, vol. 15(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223003948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.